Factory Patterns:
Factory Method
and
Abstract Factory

Design Patternsn Java Bob Tarr

Factory Patterns

e Factory patterns are examples of creational patterns
e Creational patterns abstract the object instantiation process.
They hide how objects are created and help make the overal
system independent of how its objects are created and composed.
o Class creational patterns use inheritance to decide the object to
be instantiated
= Factory Method
o Object creational patterns delegate the instantiation to another
object
= Abstract Factory

Factory Patterns
2

Design Patterns In Java Bob Tarr

Factory Patterns

¢ All OO languages have an idiom for object creation. In Javathis
idiom is the new operator. Creational patterns allow usto write
methods that create new objects without explicitly using the new
operator. Thisalows usto write methods that can instantiate
different objects and that can be extended to instantiate other
newly-developed objects, all without modifying the method's
code! (Quick! Name the principle involved herel)

Design Patterns In Java FaCtory3Paner ns Bob Tarr

The Factory Method Pattern

e Intent

= Define aninterface for creating an object, but let subclasses decide which

classto instantiate. Factory Method lets a class defer instantiation to
subclasses.

e Motivation
= Consider the following framework:

doei

Doourmont |aey — —d Apphoaiion
-:_'*ra.. i L AR ALY Doumert* 40 = Creatoecumant |
hame) MomDacamardl o e oo -s - - | nce A
Baval) Ol i horG— e e).
Feyweeti] I
My Documant k- - == == Py A prplication
CreatalinGinsani) o-————-———- -I rRburn nes Wy G ol

= The createDocument() method is a factory method.

Design Patterns In Java FaCtory4PaIter ns Bob Tarr

The Factory Method Pattern

o Applicability
Use the Factory Method pattern in any of the following situations:
= A class can't anticipate the class of objects it must create
= A class wantsits subclasses to specify the objectsit creates

e Structure

Creator
h
FactoryMethoay)
! 1=)
AnOperation() ~ 0-F---—--1 ?lroduc. FactoryMathod()
ConcreteProduct ConcreteCreator
FactoryMethod(} S-p------1 return new CencreteProduct

Factory Patterns

Design Patterns In Java 5

Bob Tarr

The Factory Method Pattern

e Participants
> Product

!

- Defines the interface for the type of objects the factory method creates

ConcreteProduct
- Implements the Product interface
> Creator

!
v

!

- Declares the factory method, which returns an object of type Product

!

> ConcreteCreator

- Overrides the factory method to return an instance of a ConcreteProduct

e Collaborations

= Creator relies on its subclasses to implement the factory method so that it

returns an instance of the appropriate ConcreteProduct

Factory Patterns

Design Patterns In Java 6

Bob Tarr

Factory Method Example 1

¢ Clientscan also use factory methods:

CraateManipulaton) DovenClick}
: Oragy)
J\ UpClick(}
LineFigure TextFigure LineManipulator TextManipulator
CreateManiputator]) Creatahanipulaton DowniClick() DownGlick])
Dragi} Drag(}
T UipClick{) o LpClick(}
1

e Thefactory method in this caseis createManipulator()

Factory Patterns

Design Patterns In Java 7 Bob Tarr
Factory Method Example 2
e Consider this maze game:
=8 MapSite
Enter{}
sides Room Wall Door
Enter() Enter() Enter()
Maze SelSice()
rooms GeiSide() isCpen
AddRoom() g
RoomMol) roomMumber
Design Patterns In Java Factory Patterns Bob Tarr

8

Factory Method Example 2 (Continued)

e Here'saMazeGame class with a createM aze() method:

/**
* MazeGane.
*/
public class MazeGane {

/] Create the maze.

public Maze createMaze() {
Maze maze = new Maze();
Room r1l = new Roon{1);
Room r2 = new Roon{2);
Door door = new Door(rl, r2);
maze. addRoon(r1);
maze. addRoonT(r 2) ;

Factory Patterns

10

Design Patternsin Java 9 Bob Tarr
Factory Method Example 2 (Continued)
rl.setSide(MazeGane. North, new Wall());
rl.setSi de(MazeGane. East, door);
rl.set Si de(MazeGane. South, new Wall());
rl.setSide(MazeGane. West, new VAl I ());
r2.setSide(MazeGane. North, new Wall());
r2.setSi de(MazeGane. East, new Vall());
r2.setSi de(MazeGane. South, new Wall ());
r2.setSi de(MazeGane. West, door);
return maze;
}
}
Design Patterns In Java Factory Patterns Bob Tarr

Factory Method Example 2 (Continued)

e The problem with this createMaze() method isits inflexibility.

o What if we wanted to have enchanted mazes with

EnchantedRooms and EnchantedDoors? Or a secret agent maze

with DoorWithLock and WallWithHiddenDoor?

e What would we have to do with the createMaze() method? As it

stands now, we would have to make significant changesto it

because of the explicit instantiations using the new operator of the
objects that make up the maze. How can we redesign things to
make it easier for createMaze() to be able to create mazes with

new types of objects?

Factory Patterns

Design Patterns In Java
11

Bob Tarr

Factory Method Example 2 (Continued)

o Let'sadd factory methods to the MazeGame class:

/**

* MazeGane with a factory nethods.
*/
public class MazeGane {
public Maze nakeMaze() {return new Maze();}
publi ¢ Room makeRoom(int n) {return new Roon(n);}

public Vall nakeWall () {return new Wall();}

publ i c Door nakeDoor (Room rl, Roomr2)
{return new Door(rl, r2);}

Factory Patterns

Design Patterns In Java
12

Bob Tarr

Factory Method Example 2 (Continued)

public Maze createMaze() {
Maze maze = nakeMaze();
Room r1 = makeRoon{1);
Room r2 = makeRoon{(2);
Door door = nmkeDoor(rl, r2);
maze. addRoon(r1);
maze. addRoonT(r 2) ;
rl.setSi de(MazeGane. North, makeWall ());
rl.setSi de(MazeGane. East, door);
rl.set Si de(MazeGane. Sout h, makeWall ());
rl.setSide(MazeGane. West, makeVall ());
r2.setSide(MazeGane. North, makeWall ());
r2.setSi de(MazeGane. East, makeVall ());
r2.set Si de(MazeGane. Sout h, makeWall ());
r2.setSi de(MazeGane. West, door);
return maze;

}

}

Design Patterns In Java FaCtory Patterns

13

Bob Tarr

Factory Method Example 2 (Continued)

o We made createMaze() just slightly more complex, but alot more
flexible!

e Consider this EnchantedM azeGame class:

public class EnchantedVazeGane extends MazeGane {
public Room makeRoom(int n) {return new Enchant edRoon(n);}
public Wall makeWall () {return new EnchantedWall ();}
publ i c Door makeDoor (Roomr1l, Room r2)
{return new Enchant edDoor (r1, r2);}

}

e The createMaze() method of MazeGame is inherited by
EnchantedM azeGame and can be used to create regular mazes or
enchanted mazes without modification!

Factory Patterns
14

Design Patterns In Java Bob Tarr

Factory Method Example 2 (Continued)

e Thereason thisworksisthat the createMaze() method of

MazeGame defers the creation of maze objects to its subclasses.
That's the Factory Method pattern at work!

¢ Inthisexample, the correlations are:

= Creator => MazeGame

= ConcreteCreator => EnchantedMazeGame (MazeGameisalso a

ConcreteCreator)

= Product => MapSite

= ConcreteProduct => Wall, Room, Door, Enchantedwall,
EnchantedRoom, EnchantedDoor

Design Patterns In Java

15

Factory Patterns

Bob Tarr

Factory Method Example 3

e Consider the following class hierarchy:

CandyStare CandyBarBin

CandyBar
S il

Snickers

Kitkat

ThreeiMusketeers

Design Patterns In Java

Factory Patterns
16

Bob Tarr

Factory Method Example 3 (Continued)

e Each CandyBarBin can hold zero or more candy bars, but all the
candy barsin one bin are of the same type. (In this case, we say
that each bin is a homogeneous container.) We want to write a
restock() method for a CandyBarBin, such that when the number
of candy bars drops below a certain level, the restock method will
add one candy bar of the proper typeto the bin.

e (Yes, it'ssilly to add just one candy bar during a restock
operation, but it's easy to add a simple loop in the code to restock
by afixed amount.)

Factory Patterns
17

Design Patterns In Java Bob Tarr

Factory Method Example 3 (Continued)

e We could have a String attribute of CandyBarBin telling us what
type of candy bar the bin holds:

/1 CandyBar Bi n.
public class CandyBarBin {
private String cbType; // CandyBar Type

public CandyBarBin(String cbType) {this.cbType = cbType;}

public void restock() {
if (getAmount!|nStock() < LowStockLevel) {
if (cbType. equal s("Snickers")) add(new Sni ckers());
else if (cbType.equal s("KitKat")) add(new KitKat());
else if (cbType.equal s("ThreeMusket eers"))
add(new ThreeMusketeers());
}
}

Design Patterns In Java Factory Patterns

18

Bob Tarr

Factory Method Example 3 (Continued)

public void add(CandyBar cb) {
/1 Code to add a candy bar to the bin.
/! Honogeneity insured here.

}

e | trust you are shuddering with revulsion right now just looking at
the above code! Does this restock() method satisfy the Open-
Closed Principle? Nope! If wewant to sell anew type of candy
bar, we have to modify the restock() method.

¢ Whenever we have an if-else statement of this sort, deciding what

to do based on aternatives represented by the state of an object,
it'sasure sign that polymorphism can come to the rescue!

Factory Patterns
19

Design Patterns In Java Bob Tarr

Factory Method Example 3 (Continued)

e First, let’s have CandyBar provide afactory method for creation
of candy bars:

public class CandyBar ({
/1 Factory Method.
publ i c CandyBar createCandyBar() {return new CandyBar();}

-

e Now each CandyBar subclass can provide the correct
implementation of the createCandyBar() method. For example,
hereisthe KitKat class:

public class KitKat extends CandyBar {
/1 Factory Method.
publ i c Candybar createCandyBar() {return new KitKat();}

Factory Patterns
20

E)esign PatternsIn Java Bob Tarr

10

Factory Method Example 3 (Continued)

e Now CandyBarBin canlook likethis:

public class CandyBarBin {
private CandyBar cb;
publ i ¢ CandyBar Bi n(CandyBar cb) {this.cb = cb;}

public void restock() {
if (getAmountlnStock() < LowStockLevel) ({
add(ch. creat eCandyBar ());

}
}

public void add(CandyBar cb) {
/1 Code to add a candy bar to the bin.
/1 Honmogeneity al ready guaranteed by the CandyBar subcl ass.

}
}

Factory Patterns
21

Design Patterns In Java Bob Tarr

Factory Method Example 3 (Continued)

e Actudly, in Java, we have both an Object class and a Class class
with some neat methods that allow us to write the restock()
method without a factory method:

public void restock() {
if (getAmountlnStock() < LowStockLevel) {
add((Candybar) cb.getC ass().new nstance());

}
}

e Andif our String candy bar type attribute is an actual Javatype
(such as Store.Candy.KitKat), we could do this:

public void restock() {
if (getAmount!|nStock() < LowStockLevel) ({
add((Candybar) C ass.forNane(cbType).new nstance());

}

Deésign Patterns In Java FaCtory Patterns

22

Bob Tarr

11

The Factory Method Pattern

e Consequences
= Benefits
- Code is made more flexible and reusable by the elimination of instantiation of
application-specific classes
- Code deals only with the interface of the Product class and can work with any
ConcreteProduct class that supports this interface
= Liabilities
- Clients might have to subclass the Creator class just to instantiate a particul ar
ConcreteProduct

e Implementation Issues

= Creator can be abstract or concrete

= Should the factory method be able to create multiple kinds of products? If
50, then the factory method has a parameter (possibly used in an if-else!) to
decide what object to create. We could override this factory method in a
subclass to try to avoid OCP problems.

Factory Patterns
23

Design Patterns In Java Bob Tarr

The Abstract Factory Pattern

e Intent

= Provide an interface for creating families of related or dependent objects
without specifying their concrete classes.

= The Abstract Factory pattern is very similar to the Factory Method pattern.
The main difference between the two is that with the Abstract Factory
pattern, a class delegates the responsibility of object instantiation to another
object via composition whereas the Factory Method pattern uses
inheritance and relies on a subclass to handle the desired object
instantiation.

= Actually, the delegated object frequently uses factory methods to perform
theinstantiation!

Factory Patterns
24

Design Patterns In Java Bob Tarr

12

The Abstract Factory Pattern

e Motivation
= A GUI toolkit that supports multiple look-and-fegls:

WidgetFactory E

CreateSerofiary]

CreatsWindow() m
AN

——|-| PMWindow | |Mo1ifWindr.vw }q——

MalifWidgetFaclory - PMWidgetFaclory L----—eeo- !

CreateSorolBar]) CresteSarolBar) i

CraateWindow() CreateWindow(] i ScrollBar
1
I A
1

Factory Patterns
25

Design Patterns In Java Bob Tarr

The Abstract Factory Pattern

o Applicability
Use the Abstract Factory pattern in any of the following situations:

= A system should be independent of how its products are created,
composed, and represented

= A class can't anticipate the class of objects it must create
= A system must use just one of a set of families of products

= A family of related product objectsis designed to be used together, and you
need to enforce this constraint

Factory Patterns
26

Design Patterns In Java Bob Tarr

13

The Abstract Factory Pattern

e Structure
actary Client
CreateProductd()
CroataFroductB)
-[Product A2 | | ProductAt |-—-.
L] L]
ConcreteFactory1 1 |Concretefactoryz | ... ;
CresteProductA[) | CreataProducta]) H i
CreataProductB() i GraateProduciB]) i
i ; ;
; : AY .
: ;
i ProductB2 Productd
: o{ s | [t J»
;

Design Patterns In Java

Factory Patterns
27

Bob Tarr

The Abstract Factory Pattern

e Participants
AbstractFactory
- Declares an interface for operations that create abstract product objects
ConcreteFactory
- Implements the operations to create concrete product objects
AbstractProduct
- Declares an interface for atype of product object
ConcreteProduct
- Defines a product object to be created by the corresponding concrete factory
- Implements the AbstractProduct interface

!
v

!
v

!

>

!

>

!

>

Client

- Uses only interfaces declared by AbstractFactory and AbstractProduct classes

Design Patterns In Java

Factory Patterns
28

Bob Tarr

14

The Abstract Factory Pattern

e Collaborations

= Normally asingle instance of a ConcretefFactory classis created at run-
time. (Thisisan example of the Singleton Pattern.) This concrete factory
creates product objects having a particular implementation. To create
different product objects, clients should use a different concrete factory.

= AbstractFactory defers creation of product objects to its ConcreteFactory

e Common Terminology Usage

= Anytime we del egate object creation to a contained object we our using the
Abstract Factory pattern

= But wetend to just say that “we are using afactory.”

Factory Patterns
29

Design Patterns In Java Bob Tarr

Abstract Factory Example 1

e Let'sseehow an Abstract Factory can be applied to the
MazeGame

o First, we'll write a MazeFactory class asfollows:

/1 MazeFactory.
public class MazeFactory {
public Maze makeMaze() {return new Maze();}
public Room makeRoom(int n) {return new Roon(n);}
public Wall makeWall () {return new Vall();}
public Door makeDoor (Roomrl, Roomr2) {return new Door(rl, r2);}

}

¢ Note that the MazeFactory classisjust a collection of factory
methods!

o Also, note that MazeFactory acts as both an AbstractFactory and
a ConcreteFactory.

Factory Patterns
30

Design Patterns In Java Bob Tarr

15

Abgtract Factory Example 1 (Continued)

e Now the createM aze() method of the MazeGame class takes a

MazeFactory reference as a parameter:

public class MazeGane {

Design Patterns In Java

public Maze createMaze(MazeFactory factory) {

Maze maze = factory. makeMaze();

Roomr1l = factory. nakeRoon(1);

Room r2 = factory. makeRoon(2);

Door door = factory. makeDoor(rl, r2);

maze. addRoon(r1);

maze. addRoon(r 2) ;

rl.setSi de(MazeGane. North, factory. makeWall());
rl. setSi de(MazeGane. East, door);

Factory Patterns
31

Bob Tarr

}

Abgtract Factory Example 1 (Continued)

rl.setSi de(MazeGane. South, factory. makeWall());
rl.setSi de(MazeGane. West, factory. makeWall ());
r2.setSide(MazeGane. North, factory. makeWall());
r2.setSi de(MazeGane. East, factory. makeWall ());
r2.setSi de(MazeGane. Sout h, factory. makeWall());
r2.setSi de(MazeGane. West, door);

return maze;

¢ Note how createM aze() delegates the responsibility for creating

Design Patterns In Java

maze objects to the MazeFactory object

Factory Patterns
32

Bob Tarr

16

Abgtract Factory Example 1 (Continued)

e We can easily extend MazeFactory to create other factories:

public class EnchantedMazeFactory extends MazeFactory {
public Room makeRoom(int n) {return new Enchant edRoon(n);}
public Wall makeWall () {return new EnchantedWall ();}
publ i c Door makeDoor (Roomrl, Room r2)
{return new EnchantedDoor (r1, r2);}

}
e Inthisexample, the correlations are:
= AbstractFactory => MazeFactory
= ConcreteFactory => EnchantedMazeFactory (MazeFactory isalso a
ConcreteFactory)
= AbstractProduct => MapSite
= ConcreteProduct => Wall, Room, Door, Enchantedwall,
EnchantedRoom, EnchantedDoor
= Client => MazeGame

Design Patterns In Java Factory Patterns

33

Bob Tarr

Abstract Factory Example 2

e TheJaval.l Abstract Window Toolkit is designed to provide a
GUI interface in a heterogeneous environment

e The AWT uses an Abstract Factory to generate all of the required
peer components for the specific platform being used

o For example, here's part of the List class:

public class List extends Conponent inplenents |tentSel ectable {
peer = getTool kit().createList(this);

}

e ThegetToolkit() method isinherited from Component and returns
areference to the factory object used to create all AWT widgets

Factory Patterns

Design Patterns In Java
34

Bob Tarr

17

Abgtract Factory Example 2 (Continued)

e Here'sthe getToolkit() method in Component:

public Toolkit getToolkit() {
/1 1f we already have a peer, return its Toolkit.
Conmponent Peer peer = this. peer;

if ((peer '= null) & & ! (peer instanceof
j ava. awt . peer. Li ght wei ght Peer)) {

return peer.getTool kit();

}
/1 If we are already in a container, return its ToolKkit.
Cont ai ner parent = this.parent;
if (parent !'= null) {

return parent.getToolkit();
}
/1 Else return the default Tool kit.
return Tool kit. get Defaul t Tool kit();

}

Factory Patterns
35

Design Patterns In Java Bob Tarr

Abgtract Factory Example 2 (Continued)

e And here's the getDefaultToolkit() method in Toolkit:

public static synchronized Tool kit getDefaul t Tool kit() {
if (toolkit == null)
String nm= System getProperty("awt.tool kit",
"sun.awt . moti f. Mool kit");
toolkit = (Tool kit)C ass. forNane(nm.new nstance();

}

return toolkit;

Factory Patterns
36

Design Patterns In Java Bob Tarr

18

Abgtract Factory Example 3

e Let'srevisit our Candy Store. At one point we had:

public class CandyBarBin {
private CandyBar cb;
publ i ¢ CandyBar Bi n(CandyBar cb) {this.cb = cb;}
public void restock() {
if (getAmountlnStock() < LowStockLevel) ({
add(ch. creat eCandyBar ());
}
}
}

e We are delegating the creation of CandyBar objects to our
contained CandyBar member, cb, which acts as a concrete factory
of CandyBar objects. And the createCandyBar method isa
Factory Method of CandyBar, whose proper implementation is

provided by the subclass of CandyBar we are actually using!

Factory Patterns
37

Design Patterns In Java Bob Tarr

Abgtract Factory Example 4

e Sockets are avery useful abstraction for communication over a
network

e The socket abstraction was originally developed at UC Berkeley
and isnow in widespread use

e Javaprovides some very nice implementations of Berkeley
socketsin the Socket and ServerSocket classes in the java.net
package

e The Socket class actually delegates all the real socket
functionality to a contained Socketlmpl object

¢ And the Socketlmpl object is created by a Socketl mplFactory
object contained in the Socket class

e Sounds like Abstract Factory!

Factory Patterns

Design Patterns In Java
38

Bob Tarr

19

Abgtract Factory Example 4 (Continued)

e Here' s some code from the Socket class:

/**

* A socket is an endpoint for comunication between two nachi nes.
* The actual work of the socket is performed by an instance of the
* Socket |l npl class. An application, by changing

* the socket factory that creates the socket inplenentation,

* can configure itself to create sockets appropriate to the |ocal
* firewal I .

*/

public class Socket {

/1 The inplenentation of this Socket.
Socket | mpl i npl ;

/1 The factory for all client sockets.
private static Socketlnpl Factory factory;

Factory Patterns

Design Patterns In Java
39

Bob Tarr

Abgtract Factory Example 4 (Continued)

/**
* Sets the client socket inplenentation factory for the
* application. The factory can be specified only once.
* \When an application creates a new client socket, the socket
* inplenentation factory's createSocketlnpl nethod is
* called to create the actual socket inplenmentation.
*/
public static synchronized void
set Socket | npl Fact ory(Socket | npl Factory fac)
throws | OException {
if (factory !'= null) {
t hrow new Socket Exception("factory al ready defined");

}

factory = fac;

Factory Patterns

Design Patterns In Java
40

Bob Tarr

20

Abgtract Factory Example 4 (Continued)

/**
* Creates an unconnected socket, with the
* systemdefault type of Socketlnpl.

*/
protected Socket () {
impl = (factory != null) ? factory.createSocket!| nmpl ()
new Pl ai nSocket I npl () ;
}
/**

* Returns the address to which the socket is connected.
*/
public | net Address getlnet Address() {
return inpl.getlnetAddress();

}
/1 Other sockets nmethods are del egated to the Socket!| npl

Factory Patterns

Design Patterns In Java
41

obj ect!

Bob Tarr

Abgtract Factory Example 4 (Continued)

e SocketlmplFactory isjust an interface:

public interface Socketlnpl Factory {
Socket | npl creat eSocket | npl () ;

}
e Socketlmpl is an abstract class:

/**
* The abstract class Socketlnpl is a common supercl ass

* of all classes that actually inplenent sockets.
* A "plain" socket inplenents these nethods exactly as

* described, without attenpting to go through a firewall or proxy.

*/
public abstract class Socketlnpl inplements Socket Options {
/1 Details omtted.

Factory Patterns

Design Patterns In Java
42

Bob Tarr

21

The Abstract Factory Pattern

e Consequences
= Benefits
- |solates clients from concrete implementation classes

- Makes exchanging product families easy, since a particular concrete factory
can support a complete family of products

- Enforces the use of products only from one family
= Liabilities
- Supporting new kinds of products requires changing the AbstractFactory
interface
e Implementation Issues

= How many instances of a particular concrete factory should there be?

- An application typically only needs a single instance of a particular concrete
factory

- Use the Singleton pattern for this purpose

Factory Patterns
43

Design Patterns In Java Bob Tarr

The Abstract Factory Pattern

e Implementation Issues
= How can the factories create the products?
- Factory Methods
- Factories
= How can new products be added to the AbstractFactory interface?
- AbstractFactory defines a different method for the creation of each product it
can produce

- We could change the interface to support only a make(String kindOfProduct)
method

Factory Patterns
44

Design Patterns In Java Bob Tarr

22

How Do Factories Create Products?

e Method 1: Use Factory Methods

/**
* W dget Factory.
* This WdgetFactory is an abstract class.
* Concrete Products are created using the factory nethods
* i mpl ement ed by subl casses.
*/
public abstract class WdgetFactory {
public abstract W ndow createW ndow();
public abstract Menu createScrollBar();
public abstract Button createButton();

Factory Patterns

Design Patterns In Java
45

Bob Tarr

How Do Factories Create Products? (Continued)

/**

* MptifWdget Factory.

* Inplenents the factory nethods of its abstract superclass.
*/
public class MtifWdgetFactory

ext ends W dget Factory {

public W ndow createWndow() {return new MtifWdow();}
public ScrollBar createScrollBar() {return new MtifScrollBar();}
public Button createButton() {return new MdtifButton();}

Factory Patterns

Design Patterns In Java
46

Bob Tarr

23

How Do Factories Create Products? (Continued)

e Method 2: Use Factories
/**
* W dget Factory.
* This WdgetFactory contains references to factories used
* to create the Concrete Products.
*/
public class WdgetFactory {
private W ndowFactory w ndowFactory;
private Scrol |l BarFactory scroll BarFactory;
private ButtonFactory buttonFactory;

public W ndow createWndow() {return
wi ndowFact ory. cr eat eW ndow() ; }

public ScrollBar createScrollBar() {return
scrol | Bar Factory. createScrol | Bar();}

public Button createButton() {return
buttonFactory. createButton();}

}

Design Patterns In Java FaCtory Patterns

47

Bob Tarr

How Do Factories Create Products? (Continued)

/**
* Mptif W dget Factory.
* Instantiates the factories used by its superclass.
*/
public class MtifWdgetFactory
ext ends W dget Factory {
public MotifWdgetFactory() {
wi ndowFactory = new MdtifW ndowFactory();
scrol | Bar Factory = new MotifScrol | BarFactory();
buttonFactory = new MotifButtonFactory();

Factory Patterns

Design Patterns In Java
48

Bob Tarr

24

How Do Factories Create Products? (Continued)

e Method 3: Use Factories With No Required Subclasses (Pure

/**
*
*
*

*

*/

Composition)

W dget Fact ory.

This Wdget Factory contains reference to factories used
to create Concrete Products. It also has a constructor
and does not need to be subcl assed.

public class WdgetFactory {

private W ndow wi ndowFactory;
private ScrollBar scroll BarFactory;
private Button buttonFactory;

Design Patterns In Java

Factory Patterns
49

Bob Tarr

How Do Factories Create Products? (Continued)

public W dget Fact ory(w ndowFactory wf,

scrol | Bar Factory sbf,
buttonFactory bf) {

wi ndowFactory = wf;

scrol | Bar Fact ooy = sbf;
buttonFactory = bf;

public W ndow createWndow() {return

wi ndowFact ory. cr eat eW ndow) ; }

public ScrollBar createScrollBar() {return

scrol | Bar Factory. createScrol | Bar();}

public Button createButton() {return

Design Patterns In Java

buttonFactory. createButton();}

Factory Patterns
50

Bob Tarr

25

