
1

Network Programming and
Java Sockets

Rajkumar Buyya
Grid Computing and Distributed Systems (GRIDS) Laboratory

Dept. of Computer Science and Software Engineering
University of Melbourne, Australia

http://www.cs.mu.oz.au/~raj or http://www.buyya.com

2

Agenda

� Introduction
� Elements of Client Server Computing
� Networking Basics
� Understanding Ports and Sockets
� Java Sockets

� Implementing a Server
� Implementing a Client

� Sample Examples
� Conclusions

3

Introduction

� Recently Internet and WWW have emerged as
global ubiquitous media for communication and
changing the way we conduct science,
engineering, and commerce.

� They also changed the way we learn, live,
enjoy, communicate, interact, engage, etc. It
appears like the modern life activities are
getting completely centered around the
Internet.

4

Internet Applications Serving Local
and Remote Users

Internet
Server

PC client

Local Area Network

PDA

5

Internet & Web as a delivery Vehicle

6

Increased demand for Internet
applications

� To take advantage of opportunities presented by
the Internet, businesses are continuously seeking
new and innovative ways and means for offering
their services via the Internet.

� This created a huge demand for software
designers with skills to create new Internet-enabled
applications or migrate existing/legacy applications
on the Internet platform.

� Object-oriented Java technologies—Sockets,
threads, RMI, clustering, Web services-- have
emerged as leading solutions for creating portable,
efficient, and maintainable large and complex
Internet applications.

7

Network

Req
ue

st

Result

a client, a server, and network

Client
Server

Client machine
Server machine

Elements of C-S Computing

8

Networking Basics

� Applications Layer
� Standard apps

� HTTP
� FTP
� Telnet

� User apps
� Transport Layer

� TCP
� UDP
� Programming Interface:

� Sockets
� Network Layer

� IP
� Link Layer

� Device drivers

� TCP/IP Stack

Application
(http,ftp,telnet,…)

Transport
(TCP, UDP,..)

Network

(IP,..)

Link

(device driver,..)

9

Networking Basics

� TCP (Transport Control
Protocol) is a
connection-oriented
protocol that provides a
reliable flow of data
between two computers.

� Example applications:
� HTTP
� FTP
� Telnet

� TCP/IP Stack

Application
(http,ftp,telnet,…)

Transport
(TCP, UDP,..)

Network

(IP,..)

Link

(device driver,..)

10

Networking Basics

� UDP (User Datagram
Protocol) is a protocol
that sends independent
packets of data, called
datagrams, from one
computer to another with
no guarantees about
arrival.

� Example applications:
� Clock server
� Ping

� TCP/IP Stack

Application
(http,ftp,telnet,…)

Transport
(TCP, UDP,..)

Network

(IP,..)

Link

(device driver,..)

11

Understanding Ports

� The TCP and UDP
protocols use ports to
map incoming data to
a particular process
running on a
computer.

server

P
o
r
t

Client
TCP

TCP or UDP

port port port port

app app app app

port# dataData

Packet

12

Understanding Ports

� Port is represented by a positive (16-bit) integer
value

� Some ports have been reserved to support
common/well known services:

	 ftp 21/tcp
	 telnet 23/tcp
	 smtp 25/tcp
	 login 513/tcp

� User level process/services generally use port
number value >= 1024

13

Sockets

� Sockets provide an interface for programming networks
at the transport layer.

� Network communication using Sockets is very much
similar to performing file I/O

� In fact, socket handle is treated like file handle.
� The streams used in file I/O operation are also applicable to

socket-based I/O
� Socket-based communication is programming language

independent.
� That means, a socket program written in Java language can

also communicate to a program written in Java or non-Java
socket program.

14

Socket Communication

 A server (program) runs on a specific
computer and has a socket that is bound
to a specific port. The server waits and
listens to the socket for a client to make a
connection request.

server
Client

Connection requestport

15

Socket Communication

� If everything goes well, the server accepts the
connection. Upon acceptance, the server gets a new
socket bounds to a different port. It needs a new socket
(consequently a different port number) so that it can
continue to listen to the original socket for connection
requests while serving the connected client.

server

Client
Connection

port

port po
rt

16

Sockets and Java Socket Classes

 A socket is one endpoint of a two-way
communication link between two
programs running on the network.

 A socket is bound to a port number so
that the TCP layer can identify the
application that data destined to be sent.

 Java’s .net package provides two
classes:

� Socket – for implementing a client
� ServerSocket – for implementing a server

17

Java Sockets
ServerSocket(1234)

Socket(“128.250.25.158”, 1234)

Output/write stream

Input/read stream

It can be host_name like “mandroo.cs.mu.oz.au”

Client

Server

18

Implementing a Server
1. Open the Server Socket:

ServerSocket server;
DataOutputStream os;

DataInputStream is;
server = new ServerSocket(PORT);

2. Wait for the Client Request:
Socket client = server.accept();

3. Create I/O streams for communicating to the client
is = new DataInputStream(client.getInputStream());

os = new DataOutputStream(client.getOutputStream());

4. Perform communication with client
Receive from client: String line = is.readLine();
Send to client: os.writeBytes("Hello\n");

5. Close sockets: client.close();
For multithreaded server:

while(true) {

i. wait for client requests (step 2 above)
ii. create a thread with “client” socket as parameter (the thread creates streams (as in step
(3) and does communication as stated in (4). Remove thread once service is provided.

}

19

Implementing a Client

1. Create a Socket Object:
client = new Socket(server, port_id);

2. Create I/O streams for communicating with the server.
is = new DataInputStream(client.getInputStream());
os = new DataOutputStream(client.getOutputStream());

3. Perform I/O or communication with the server:
� Receive data from the server:

String line = is.readLine();
� Send data to the server:

os.writeBytes("Hello\n");
4. Close the socket when done:
client.close();

20

A simple server (simplified code)

// SimpleServer.java: a simple server program

import java.net.*;

import java.io.*;

public class SimpleServer {

public static void main(String args[]) throws IOException {

// Register service on port 1234

ServerSocket s = new ServerSocket(1234);

Socket s1=s.accept(); // Wait and accept a connection

// Get a communication stream associated with the socket

OutputStream s1out = s1.getOutputStream();

DataOutputStream dos = new DataOutputStream (s1out);

// Send a string!

dos.writeUTF("Hi there");

// Close the connection, but not the server socket

dos.close();

s1out.close();

s1.close();

}

}

21

A simple client (simplified code)

// SimpleClient.java: a simple client program

import java.net.*;

import java.io.*;

public class SimpleClient {

public static void main(String args[]) throws IOException {

// Open your connection to a server, at port 1234

Socket s1 = new Socket("mundroo.cs.mu.oz.au",1234);

// Get an input file handle from the socket and read the input

InputStream s1In = s1.getInputStream();

DataInputStream dis = new DataInputStream(s1In);

String st = new String (dis.readUTF());

System.out.println(st);

// When done, just close the connection and exit

dis.close();

s1In.close();

s1.close();

}

}

22

Run

� Run Server on mundroo.cs.mu.oz.au
 [raj@mundroo] java SimpleServer &

� Run Client on any machine (including mundroo):
 [raj@mundroo] java SimpleClient

Hi there

� If you run client when server is not up:
 [raj@mundroo] sockets [1:147] java SimpleClient
Exception in thread "main" java.net.ConnectException: Connection refused

at java.net.PlainSocketImpl.socketConnect(Native Method)
at java.net.PlainSocketImpl.doConnect(PlainSocketImpl.java:320)
at java.net.PlainSocketImpl.connectToAddress(PlainSocketImpl.java:133)
at java.net.PlainSocketImpl.connect(PlainSocketImpl.java:120)
at java.net.Socket.<init>(Socket.java:273)
at java.net.Socket.<init>(Socket.java:100)
at SimpleClient.main(SimpleClient.java:6)

23

Socket Exceptions

try {
Socket client = new Socket(host, port);
handleConnection(client);

}
catch(UnknownHostException uhe) {

System.out.println("Unknown host: " + host);
uhe.printStackTrace();

}
catch(IOException ioe) {
System.out.println("IOException: " + ioe);

ioe.printStackTrace();
}

24

ServerSocket & Exceptions

� public ServerSocket(int port) throws IOException
� Creates a server socket on a specified port.
� A port of 0 creates a socket on any free port. You can use

getLocalPort() to identify the (assigned) port on which this
socket is listening.

� The maximum queue length for incoming connection
indications (a request to connect) is set to 50. If a connection
indication arrives when the queue is full, the connection is
refused.

� Throws:
� IOException - if an I/O error occurs when opening the socket.
� SecurityException - if a security manager exists and its

checkListen method doesn’t allow the operation.

25

Server in Loop: Always up

// SimpleServerLoop.java: a simple server program that runs forever in a single thead
import java.net.*;
import java.io.*;
public class SimpleServerLoop {
public static void main(String args[]) throws IOException {
// Register service on port 1234
ServerSocket s = new ServerSocket(1234);
while(true)
{

Socket s1=s.accept(); // Wait and accept a connection
// Get a communication stream associated with the socket
OutputStream s1out = s1.getOutputStream();
DataOutputStream dos = new DataOutputStream (s1out);
// Send a string!
dos.writeUTF("Hi there");
// Close the connection, but not the server socket
dos.close();
s1out.close();
s1.close();

}
}

}

26

Server
Threads

Server ProcessClient 1 Process

Client 2 Process

Multithreaded Server: For Serving
Multiple Clients Concurrently

� Internet

27

Conclusion

� Programming client/server applications in
Java is fun and challenging.

� Programming socket programming in
Java is much easier than doing it in other
languages such as C.

� Keywords:
� Clients, servers, TCP/IP, port number,

sockets, Java sockets

