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Introduction

� Recently Internet and WWW have emerged as 
global ubiquitous media for communication and 
changing the way we conduct science, 
engineering, and commerce.

� They also changed the way we learn, live, 
enjoy, communicate, interact, engage, etc. It 
appears like the modern life activities are 
getting completely centered around the 
Internet.
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Internet Applications Serving Local 
and Remote Users
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Internet & Web as a delivery Vehicle
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Increased demand for Internet 
applications

� To take advantage of opportunities presented by 
the Internet, businesses are continuously seeking 
new and innovative ways and means for offering 
their services via the Internet.

� This created a huge demand for software 
designers with skills to create new Internet-enabled 
applications or migrate existing/legacy applications 
on the Internet platform.

� Object-oriented Java technologies—Sockets, 
threads, RMI, clustering, Web services-- have 
emerged as leading solutions for creating portable, 
efficient, and maintainable large and complex 
Internet applications.
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Networking Basics

� Applications Layer
� Standard apps

� HTTP
� FTP
� Telnet

� User apps
� Transport Layer

� TCP
� UDP
� Programming Interface:

� Sockets
� Network Layer

� IP
� Link Layer

� Device drivers

� TCP/IP Stack
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Networking Basics

� TCP (Transport Control 
Protocol) is a 
connection-oriented 
protocol that provides a 
reliable flow of data 
between two computers.

� Example applications:
� HTTP
� FTP
� Telnet

� TCP/IP Stack
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Networking Basics

� UDP (User Datagram 
Protocol) is a protocol 
that sends independent 
packets of data, called 
datagrams, from one 
computer to another with 
no guarantees about 
arrival. 

� Example applications:
� Clock server
� Ping

� TCP/IP Stack
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Understanding Ports

� The TCP and UDP 
protocols use ports to 
map incoming data to 
a particular process
running on a 
computer.
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Understanding Ports

� Port is represented by a positive (16-bit) integer 
value

� Some ports have been reserved to support 
common/well known services:

	 ftp    21/tcp
	 telnet 23/tcp
	 smtp 25/tcp
	 login 513/tcp

� User level process/services generally use port 
number value >= 1024
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Sockets

� Sockets provide an interface for programming networks 
at the transport layer.

� Network communication using Sockets is very much 
similar to performing file I/O

� In fact, socket handle is treated like file handle.
� The streams used in file I/O operation are also applicable to 

socket-based I/O
� Socket-based communication is programming language 

independent.
� That means, a socket program written in Java language can 

also communicate to a program written in Java or non-Java 
socket program.
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Socket Communication


 A server (program) runs on a specific 
computer and has a socket that is bound 
to a specific port. The server waits and 
listens to the socket for a client to make a 
connection request.
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Socket Communication

� If everything goes well, the server accepts the 
connection. Upon acceptance, the server gets a new 
socket bounds to a different port. It needs a new socket 
(consequently a different port number) so that it can 
continue to listen to the original socket for connection 
requests while serving the connected client.

server
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Sockets and Java Socket Classes


 A socket is one endpoint of a two-way 
communication link between two 
programs running on the network. 


 A socket is bound to a port number so 
that the TCP layer can identify the 
application that data destined to be sent.


 Java’s .net package provides two 
classes:

� Socket – for implementing a client
� ServerSocket – for implementing a server
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Java Sockets
ServerSocket(1234)

Socket(“128.250.25.158”, 1234)

Output/write stream

Input/read stream

It can be host_name like “mandroo.cs.mu.oz.au”

Client

Server
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Implementing a Server
1. Open the Server Socket:

ServerSocket server;  
DataOutputStream os;

DataInputStream is;
server = new ServerSocket( PORT );

2. Wait for the Client Request:
Socket client = server.accept();

3. Create I/O streams for communicating to the client
is = new DataInputStream( client.getInputStream() );

os = new DataOutputStream( client.getOutputStream() );

4. Perform communication with client
Receive from client: String line = is.readLine(); 
Send to client: os.writeBytes("Hello\n");

5. Close sockets:    client.close();
For multithreaded server:

while(true) {

i. wait for client requests (step 2 above)
ii. create a thread with “client” socket as parameter (the thread creates streams (as in step 
(3) and does communication as stated  in (4). Remove thread once service is provided.

}
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Implementing a Client

1. Create a Socket Object:
client = new Socket( server, port_id );

2. Create I/O streams for communicating with the server.
is = new DataInputStream(client.getInputStream() );
os = new DataOutputStream( client.getOutputStream() );

3. Perform I/O or communication with the server:
� Receive data from the server: 

String line = is.readLine(); 
� Send data to the server: 

os.writeBytes("Hello\n");
4. Close the socket when done:    
client.close();
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A simple server (simplified code) 

// SimpleServer.java: a simple server program

import java.net.*;

import java.io.*;

public class SimpleServer {

public static void main(String args[]) throws IOException {

// Register service on port 1234

ServerSocket s = new ServerSocket(1234);

Socket s1=s.accept(); // Wait and accept a connection

// Get a communication stream associated with the socket

OutputStream s1out = s1.getOutputStream();

DataOutputStream dos = new DataOutputStream (s1out);

// Send a string!

dos.writeUTF("Hi there");

// Close the connection, but not the server socket

dos.close();

s1out.close();

s1.close();

}

}
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A simple client (simplified code) 

// SimpleClient.java: a simple client program

import java.net.*;

import java.io.*;

public class SimpleClient {

public static void main(String args[]) throws IOException {

// Open your connection to a server, at port 1234

Socket s1 = new Socket("mundroo.cs.mu.oz.au",1234);

// Get an input file handle from the socket and read the input

InputStream s1In = s1.getInputStream();

DataInputStream dis = new DataInputStream(s1In);

String st = new String (dis.readUTF());

System.out.println(st);

// When done, just close the connection and exit

dis.close();

s1In.close();

s1.close();

}

}
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Run

� Run Server on mundroo.cs.mu.oz.au
 [raj@mundroo] java SimpleServer &

� Run Client on any machine (including mundroo):
 [raj@mundroo] java SimpleClient

Hi there

� If you run client when server is not up:
 [raj@mundroo] sockets [1:147] java SimpleClient
Exception in thread "main" java.net.ConnectException: Connection refused

at java.net.PlainSocketImpl.socketConnect(Native Method)
at java.net.PlainSocketImpl.doConnect(PlainSocketImpl.java:320)
at java.net.PlainSocketImpl.connectToAddress(PlainSocketImpl.java:133)
at java.net.PlainSocketImpl.connect(PlainSocketImpl.java:120)
at java.net.Socket.<init>(Socket.java:273)
at java.net.Socket.<init>(Socket.java:100)
at SimpleClient.main(SimpleClient.java:6)
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Socket Exceptions

try { 
Socket client = new Socket(host, port); 
handleConnection(client); 

} 
catch(UnknownHostException uhe) { 

System.out.println("Unknown host: " + host); 
uhe.printStackTrace(); 

} 
catch(IOException ioe) { 
System.out.println("IOException: " + ioe); 

ioe.printStackTrace(); 
} 

24

ServerSocket & Exceptions

� public ServerSocket(int port) throws IOException
� Creates a server socket on a specified port. 
� A port of 0 creates a socket on any free port. You can use 

getLocalPort() to identify the (assigned) port on which this 
socket is listening. 

� The maximum queue length for incoming connection 
indications (a request to connect) is set to 50. If a connection
indication arrives when the queue is full, the connection is 
refused. 

� Throws:
� IOException - if an I/O error occurs when opening the socket.
� SecurityException - if a security manager exists and its 

checkListen method doesn’t allow the operation.
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Server in Loop: Always up

// SimpleServerLoop.java: a simple server program that runs forever in a single thead
import java.net.*;
import java.io.*;
public class SimpleServerLoop {
public static void main(String args[]) throws IOException {
// Register service on port 1234
ServerSocket s = new ServerSocket(1234);
while(true)
{

Socket s1=s.accept(); // Wait and accept a connection
// Get a communication stream associated with the socket
OutputStream s1out = s1.getOutputStream();
DataOutputStream dos = new DataOutputStream (s1out);
// Send a string!
dos.writeUTF("Hi there");
// Close the connection, but not the server socket
dos.close();
s1out.close();
s1.close();

}
}

}
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Server
Threads

Server ProcessClient 1 Process

Client 2 Process

Multithreaded Server: For Serving 
Multiple Clients Concurrently

� Internet

27

Conclusion

� Programming client/server applications in 
Java is fun and challenging.

� Programming socket programming in 
Java is much easier than doing it in other 
languages such as C.

� Keywords:
� Clients, servers, TCP/IP, port number, 

sockets, Java sockets


