
1

Review Lectures

2

The Final Exam Paper

� Duration: 2 hours and 30 minutes
� Reading: 15 minutes
� Total marks: 65
� Hurdle: 32.5

3

The Structure

253Long Answer

156Short Answer

6534Total

2525Multiple Choice

MarksQuestionsSections

4

Topics

� Software Engineering (≈5% of 65)

5

Topics (Cont’d)

� Java and OOP (≈65% of 65)
� Concepts & Definitions
� Code fragments
� Writing a small program

6

Topics (Cont’d)

� UML and OOD (≈30% of 65)
� Concepts & Definitions
� Understanding Diagrams
� OOD Principles
� Design Patterns
� Design using UML

7

Software Engineering - Introduction

� Software Engineering is an engineering
discipline which is concerned with all
aspects of software production from the
early stages of system requirements
through to maintaining the system after
is has gone into use.

8

Software Process

� Software Process defines the way to
produce software. I t includes

� Software life-cycle model
� Tools to use
� Individuals building software

� Software life-cycle model defines how
different phases of the life cycle are
managed.

9

Phases of Software Life-cycle

� Requirements
� Specification (Analysis)
� Design
� Implementation
� Integration
� Maintenance
� Retirement

10

Life-Cycle Models

� Build-and-fix model
� Waterfall model
� Rapid prototyping model
� Incremental model
� Extreme programming
� Synchronize-and-stabilize model
� Spiral model
� Object-oriented life-cycle models
� Comparison of life-cycle models

11

Abstract Data Type (ADT)

� A structure that contains both data
and the actions to be performed on
that data.

� Class is an implementation of an
Abstract Data Type.

12

Object Oriented Design
Concepts

13

Class

� Class is a set of attributes and operations
that are performed on the attributes.

Account

accountName
accountBalance

withdraw()
deposit()
determineBalance()

Student

name
age
studentId

getName()
getId()

Circle

centre
radius

area()
circumference()

14

Objects

� An Object Oriented system is a
collection of interacting Objects.

� Object is an instance of a class.

15

Classes/Objects

Student
:John

:Jill

John and Jill are
objects of class

Student

Circle
:circleA

:circleB

circleA and circleB
are

objects of class
Circle

16

Object Oriented Paradigm: Features

� Encapsulation
� Data Abstraction
� Inheritance
� Polymorphism
� Persistence
� Delegation

17

Java Review

18

Hello World

// HelloWorld.java: Hello World program
class HelloWorld

{

public static void main(String args[])

{

System.out.println(“Hello World”);

}

}

19

Program Processing

� Compilation
javac HelloWorld.java

results in HelloWorld.class

� Execution
java HelloWorld

Hello World

20

Basic Data Types
� Types

boolean either true of false
char 16 bit Unicode 1.1
byte 8-bit integer (signed)
short 16-bit integer (signed)
int 32-bit integer (signed)
long 64-bit integer (singed)
float 32-bit floating point (IEEE 754-1985)
double 64-bit floating point (IEEE 754-1985)

� String (class for manipulating strings)
� Java uses Unicode to represent characters

internally

21

Control Flow

� Control Flow Statements in JAVA
� while loop
� for loop
� do-while loop
� if-else statement
� switch statement

� JAVA does not support a goto statement

22

Classes

� A class is a collection of fields (data) and
methods (procedure or function) that
operate on that data.

Circle

centre
radius

circumference()
area()

23

Classes

� A class is a collection of fields (data) and methods
(procedure or function) that operate on that data.

� The basic syntax for a class definition:

� Bare bone class – no fields, no methods

public class Circle {
// my circle class

}

class ClassName [extends
SuperClassName]
{

[fields declaration]
[methods declaration]

}

24

Constructors

� Constructor is a method that gets invoked at
object creation time.

� Constructors have the same name as the class.
� Constructors cannot return values.
� Constructors are normally used for initializing

objects.
� A class can have more than one constructor –

with different input arguments.

25

Defining a Constructor
� Like any other method

� Invoking:
� There is NO explicit invocation statement

needed: When the object creation statement
is executed, the constructor method will be
executed automatically.

public class ClassName {

// Data Fields…

// Constructor
public ClassName()
{

// Method Body Statements initialising Data Fields
}

//Methods to manipulate data fields
}

26

Method Overloading

� Constructors all have the same name?
� In Java, methods are distinguished by:

	 name
	 number of arguments
	 type of
	 position of arguments

� Not method overriding (coming up),
method overloading:

27

Polymorphism

� Allows a single method or operator associated
with different meaning depending on the type
of data passed to it. I t can be realised through:

	 Method Overloading
	 Operator Overloading (Supported in C+ + , but not in

Java)
� Defining the same method with different

argument types (method overloading) -
polymorphism.

� The method body can have different logic
depending on the date type of arguments.

28

Scenario

� A Program needs to find a maximum of two
numbers or Strings. Write a separate function
for each operation.

	 In C:

 int max_int(int a, int b)

 int max_string(char * s1, char * s2)

 max_int (10, 5) or max_string (“melbourne”, “sydney”)

	 In Java:

 int max(int a, int b)

 int max(String s1, String s2)

 max(10, 5) or max(“melbourne”, “sydney”)

	 Which is better ? Readability and intuitive wise ?

29

Data Hiding and Encapsulation

� Java provides control over the visibility of
variables and methods, encapsulation,
safely sealing data within the capsule of
the class

� Prevents programmers from relying on
details of class implementation, so you
can update without worry

� Keeps code elegant and clean (easier to
maintain)

30

Visibility

area

Circle

circumference

Center (x,y)
Radius r

message

Construction time message

message

Circle

31

Parameter passing

� Method parameters which are objects are
passed by reference.

� Copy of the reference to the object is
passed into method, original value
unchanged.

32

Delegation

� Ability for a class to delegate its
responsibilities to another class.

� A way of making an object invoking
services of other objects through
containership.

33

Inheritance

� Ability to define a class as a subclass of
another class.

� Subclass inherits
properties from the
parent class.

Parent

Child

Inherited
capability

34

Subclassing
� Subclasses created by the keyword

extends:

� Each GraphicCircle object is also a Circle!

public class GraphicCircle extends Circle {
// automatically inherit all the variables and methods
// of Circle, so only need to put in the ‘new stuff’

Color outline, fill;
public void draw(DrawWindow dw) {

dw.drawCircle(x,y,r,outline,fill);
}

}

35

Abstract Classes

� An Abstract class is a conceptual class.

� An Abstract class cannot be instantiated –
objects cannot be created.

� Abstract classes provides a common root
for a group of classes, nicely tied
together in a package:

36

Abstract Classes

package shapes;

public abstract class Shape {
public abstract double area();
public abstract double circumference();
public void move() {

// impementation
}

}

37

Abstract Classes

public Circle extends Shape {
protected double r;
protected static final double PI =3.1415926535;
public Circle() { r = 1.0;)
public double area() { return PI * r * r; }

…
}
public Rectangle extend Shape {

protected double w, h;
public Rectangle() { w = 0.0; h=0.0; }
public double area() { return w * h; }

}

38

Abstract Classes

� Any class with an abstract method is
automatically abstract

� A class declared abstract, even with no abstract
methods can not be instantiated

� A subclass of an abstract class can be
instantiated if it overrides each of the abstract
methods, with an implementation for each

� A subclass that does not implement all of the
superclass abstract methods is itself abstract

39

Interfaces

� Interface is a conceptual entity similar to a
Abstract class.

� Can contain only constants (final variables) and
abstract method (no implementation) -
Different from Abstract classes.

� Use when a number of classes share a
common interface.

� Each class should implement the interface.

40

Interfaces: An informal way of
realising multiple inheritance

� An interface is basically a kind of class—it
contains methods and variables, but they have
to be only abstract classes and final
fields/variables.

� Therefore, it is the responsibility of the class
that implements an interface to supply the code
for methods.

� A class can implement any number of
interfaces, but cannot extend more than one
class at a time.

� Therefore, interfaces are considered as an
informal way of realising multiple inheritance in
Java.

41

Interface - Example

speak()

Politician Priest

<<Interface>>
Speaker

speak() speak()

Lecturer

speak()

42

Interfaces Definition

� Syntax (appears like abstract class):

� Example:

interface InterfaceName {
// Constant/Final Variable Declaration
// Methods Declaration – only method body

}

interface Speaker {
public void speak();

}

43

Error Handling

� Any program can find itself in unusual
circumstances – Error Conditions.

� A “good” program should be able to
handle these conditions gracefully.

� Java provides a mechanism to handle
these error condition - exceptions

44

Exceptions in Java

� A method can signal an error condition by
throwing an exception – throws

� The calling method can transfer control to
a exception handler by catching an
exception - try, catch

� Clean up can be done by - finally

45

Common Java Exceptions

� ArithmeticException
� ArrayIndexOutOfBoundException
� ArrayStoreException
� FileNotFoundException
� IOException – general I /O failure
� NullPointerException – referencing a null object
� OutOfMemoryException
� SecurityException – when applet tries to perform an

action not allowed by the browser’s security setting.
� StackOverflowException
� StringIndexOutOfBoundException

46

Exception Handling Mechanism

try Block

Statements that causes
an exception

catch Block

Statements that
handle the exception

Throws
exception

Object

47

Syntax of Exception Handling Code

…
…
try {

/ / statements

}
catch(Exception-Type e)
{

/ / statements to process exception

}
..
..

48

Streams

� Java Uses the concept of
Streams to represent the
ordered sequence of data, a
common characteristic shared
by all I /O devices.

� Streams presents a uniform,
easy to use, object oriented
interface between the
program and I /O devices.

� A stream in Java is a path
along which data flows (like a
river or pipe along which
water flows).

49

I /O and Data Movement

 The flow of data into a program
(input) may come from different
devices such as keyboard,
mouse, memory, disk, network,
or another program.

 The flow of data out of a
program (output) may go to the
screen, printer, memory, disk,
network, another program.

 Both input and output share a
certain common property such as
unidirectional movement of data
– a sequence of bytes and
characters and support to the
sequential access to the data.

50

Stream Types

� The concepts of sending
data from one stream to
another (like a pipe
feeding into another
pipe) has made streams
powerful tool for file
processing.

� Connecting streams can
also act as filters.

� Streams are classified
into two basic types:

 Input Steam
 Output Stream

Source Program

Input Stream
reads

SourceProgram

Output Stream

writes

51

Java Stream Classes

� Input/Output related classes are defined in
java.io package.

� Input/Output in Java is defined in terms of
streams.

� A stream is a sequence of data, of no
particular length.

� Java classes can be categorised into two
groups based on the data type one which
they operate:

� Byte streams
� Character Streams

52

Classification of Java Stream Classes

Byte Stream
classes

Character Stream
classes

53

Graphical User Interface (GUI)
Applications

Abstract Windowing Toolkit (AWT)
Events Handling

Applets

54

AWT - Abstract Windowing
Toolkit

� Single Windowing Interface on Multiple
Platforms

� Supports functions common to all window
systems

� Uses Underlying Native Window system
� AWT provides

� GUI widgets
� Event Handling
� Containers for widgets
� Layout managers
� Graphic operations

55

Building Graphical User Interfaces

� import java.awt.* ;
� Assemble the GUI

� use GUI components,
� basic components (e.g., Button, TextField)
� containers (Frame, Panel)

� set the positioning of the components
� use Layout Managers

� Attach events

56

A sample GUI program

import java.awt.* ;
public class MyGui
{

public static void main(String args[])
{

Frame f = new Frame ("My Frame");
Button b = new Button("OK");
TextField tf = new TextField("Programming in Java", 20);
f.setLayout(new FlowLayout());
f.add(b);
f.add(tf);
f.setSize(300, 300);
f.setVisible(true);

}
}

57

outputOutput

58

Sockets and Java Socket Classes

� A socket is an endpoint of a two-way
communication link between two
programs running on the network.

� A socket is bound to a port number so
that the TCP layer can identify the
application that data destined to be sent.

� Java’s .net package provides two classes:
� Socket – for implementing a client
� ServerSocket – for implementing a server

59

Java Sockets
ServerSocket(1234)

Socket(“128.250.25.158”, 1234)

Output/write stream

Input/read stream

It can be host_name like “mandroo.cs.mu.oz.au”

Client

Server

60

A Multithreaded Program

Main Thread

Thread A Thread B Thread C

start start
start

Threads may switch or exchange data/ results

61

An example

class MyThread extends Thread { / / the thread
public void run() {

System.out.println(" this thread is running ... ");
}

} / / end class MyThread

class ThreadEx1 { / / a program that utilizes the thread
public static void main(String [] args) {

MyThread t = new MyThread() ;
/ / due to extending the Thread class (above)
/ / I can call start(), and this will call
/ / run(). start() is a method in class Thread.
t .start() ;

} / / end main()
} / / end class ThreadEx1

62

Life Cycle of Thread

new

runnable non-runnable

dead

wait()
sleep()
suspend()
blocked

notify()
resume()
unblocked

start()

stop()

63

Unified Modeling Language

64

Software Development Process and
Unified Modeling Language (UML)

� A software development process is a set of phases that are
followed to bring a product or a system from conception to
delivery.

� In the Unified Process, there are four of these phases:
� Inception (Analysis phase)

� identify the system we are going to develop, including what it contains and
its business case.

� UML: use-case diagrams
� Elaboration (Design phase):

� perform detailed design and identify the foundation of system from “use
case diagram”, which eventually lead to classes.

� UML: classes, objects, class diagrams, sequence diagram, collaboration
diagrams etc.

� Construction (Implementation phase): write software using Java/C+ +
� the actual building of the product from the design of the system.

� Transition (Rolling out phase): Deliver the system/product to the
users. Includes maintenance, upgrades, and so on until phasing out.

65

UML– Diagrams – cont..

Structural

Deployment Diagram

Component Diagram

Object Diagram

Class Diagram

Statechart Diagram

Behavioral

Activity Diagram

Collaboration Diagram

Sequence Diagram

Use case Diagram

66

Use Case Diagrams

� Use Case diagrams show the various
activities the users can perform on the
system.

� System is something that performs a
function.

� They model the dynamic aspects of the
system.

� Provides a user’s perspective of the
system.

67

Use Case Diagrams

� A set of ACTORS : roles users can play in
interacting with the system.

� An actor is used to represent something that users
our system.

� A set of USE CASES: each describes a possible
kind of interaction between an actor and the
system.

� Uses cases are actions that a user takes on a system
� A number of RELATIONSHIPS between these

entities (Actors and Use Cases).
� Relationships are simply illustrated with a line

connecting actors to use cases.
68

Use Case Diagrams - Actors

� An actor is a user of the system playing
a particular role.

� Actor is shown with a stick figure.

employee clientemployer

69

Use Case Diagrams – Use Cases

� Use case is a particular activity a user can
do on the system.

� Is represented by an ellipse.
� Following are two use cases for a library

system.

ReserveBorrow

70

Use Case Diagram – Example1
(Library)

A Library System.

client employee

supervisor

library system

borrow

reserve

Order title

Fine payment

71

Class Visibility

� public level +
� protected level #
� private level -

- centreX:Int
- centreY:Int= 0

Circle

+ draw()
move(Int X, Int Y)

72

Class Relationships

� Classes can related to each other through
different relationships:

� Association (delegation)
� Generalization (inheritance)
� Realization (interfaces)
� Dependency

73

Association

� Association describes a link, a link being
a connection among objects between
classes.

� Association is shown by a solid line
between classes.

74

Association - Example

� A Person works for a Company.

Person Company
employee employer

works for

Association Name

Role

75

Generalization (Inheritance)

� Child class is a special case of the parent
class

SuperClass

SubClass1 SubClass2

76

Abstract Methods (Operations)

Shape

Circle Rectangle

draw()

draw() draw()

77

Realization- Interface

<<interface>>
TypeWriter

ctl()
pageDown()

brandName
numOfKeys

Keyboard

keyStroke()

� Interface is a set of operation the class
carries out

ctl()
pageDown()

brandName
numOfKeys

Keyboard

TypeWriter

OR

78

Class Diagram Example

School Department

Student Course Instructor

1…*

*

member

* *

attends

* 1..*

teaches

1..*

1

1 1..*

has

1..*

1..*

assignedTo
offeredBy

79

Sequence Diagram

� Shows how objects communicate with
each other over time.

� The sequence diagram consists of
OBJECTS, MESSAGES represented as
solid-line arrows, and TIME represented
as a vertical progression

80

Sequence Diagram – Time &
Messages

� Messages are used to illustrate communication between
different active objects of a sequence diagram.

:Name1 :Name2

Message Two

Actor
Message One

81

Types of Messages

� Synchronous (flow interrupt until the message
has completed.

� Asynchronous (don’t wait for response)

� Flat – no distinction between sysn/async

� Return – control flow has returned to the caller.

82

Sequence Diagram – Compilation

:Compiler Linker
Actor

Compile

FileSystem

Load Files

Save OBJ Files

Compile files

Link

Load OBJ files

Link OBJ files

Write EXE file

83

Sequence Diagram – Enroll Student for
subject successfully

u:URSDatabase

procCmd(cmd)
parseCommand(cmd)

execute()

{ transient}

a:AssgSubCmd< < create > >

AssgSubCmd(u,cmdA)

getStudent(id)

return stu

getSubject(subId)

return sub
[if stu != NULL and sub != NULL]

stu:Student

addSubject(sub)

84

Collaboration Diagram – Enroll Student
in Subject Scenario

u:URSDatabase

{ new}

a:AssgSubCmd

2:AddSubCmd(u,cmdA)

{ transient}

< < local> >

3: execute()

3.1: stu: = getStudent(id)

< < self> >

1:parseCommand()

procCmd(cmd)

stu:Student

3.3: [stu != NULL and
sub!= NULL] :

addSubject(sub){ parameter}

3.2: sub: = getSubject(subId)

