
1

Design Patterns

2

Agenda - Design Patterns

� What is a design pattern

� Motivation for patterns

� Pattern Categories

� Pattern Examples

3

Patterns Overview

� Patterns support reuse of software
architecture and design.

� Patterns capture the static and dynamic
structures and collaborations of
successful solutions to problems that
arise when building applications.

4

Motivation for Patterns

� Developing software is hard

� Developing reusable software is even
harder

� Patterns provide proven solutions

� Patterns can be reused in design

5

Becoming a software designer

� First learn the rules
� Algorithms, data structures and languages

� Then learn the principles
� Structured design, OO design

� However to truly master software design,
you must study the design of masters

� These designs have patterns to be
understood, remembered and re-used

6

Design Pattern – example stock
quote service

Real Time Stock Quotes

Observers

Subject

7

Observer Pattern

� Intent
� Define a one-to-many dependency between objects

so that when one object changes state, all its
dependents are notified and updated automatically.

� Key forces
� There may be many observers
� Each observer may react differently to same

notification
� Subjects should be decoupled as much as possible

from the observer to allow observers to change
independently.

8

Observer Pattern – Class diagram

Subject

attach(Observer)
detach(Observer)

notify()

state

getStatus()
setStatus()
notify()

ConcreteSubject

Observer

update()

state

update()

ConcreteObserver

1 *

9

Observer Pattern – sequence diagram

setStatus()

notify()

update()

getStatus()

update()

getStatus()

Sequence Diagram

s:ConcreteSubject :ConcreteObserver :ConcreteObserver

10

Pattern Template

� Pattern Name and Classification
� A good , concise name for the pattern and the pattern’s type

� Intent
� Short statement about what the pattern does

� Also Known As
� Other names for the pattern

� Motivation
� A scenario that illustrates where the pattern would be useful

� Applicability
� Situations where the pattern can be used

11

Pattern Template (cont’d)

� Structure
� A graphical representation of the pattern

� Participants
� The classes and objects participating in the pattern

� Collaborations
� How to do the participants interact to carry out their

responsibilities?
� Consequences

� What are the pros and cons of using the pattern?
� Implementation

� Hints and techniques for implementing the pattern

12

Pattern Template (cont’d)

� Sample Code
� Code fragments for a sample implementation

� Known Uses
� Examples of the pattern in real systems

� Related Patterns
� Other patterns that are closely related to the pattern

13

Pattern Types

� Creational Patterns
� Deal with initializing and configuring classes

and objects.
� Structural Patterns

� Deal with decoupling interface and
implementation of classes and objects.

� Behavioural Patterns
� Deal with dynamic interactions among

societies of classes and objects.

14

Creational Patterns

	 Singleton

 Factory for a singular (sole) instance

	 Factory Method

 Method in a derived class creates associates

	 Builder

 Factory for building complex objects incrementally.

	 Prototype

 Factory for cloning new instances from a prototype

15

Singleton

	 Pattern Name and Classification

 Singleton

	 Intent

 Ensure a class only has one instance, and provide a

global point of access to it.
	 Motivation

 There are times when a class can only have one
instance.

16

Singleton

	 Applicability

 there must be only one instance of a class, and it
must be accessible to clients from a well-known
access point

 when the sole instance should be extensible by
subclassing, and clients should be able to use an
extended instance without modifying their code.

17

Singleton

class Singleton {
private static Singleton _instance = null;
private Singleton() {

/ / fill in the blank
}

public static Singleton getInstance() {
if (_instance = = null)

_instance = new Singleton();
return _instance;

}
public void otherOperations() { }

}

18

Singleton

class TestSingleton {

public void method1(){
X = Singleton.getInstance();

}

public void method2(){
Y = Singleton.getInstance();

}

}

19

Structural Patterns

	 Adapter

 Translator adapts a server interface for a client

	 Bridge

 Abstraction for binding one of many implementations

	 Composite

 Structure for building recursive aggregations

	 Decorator

 Decorator extends an object transparently

20

Bridge

	 Pattern Name and Classification

 Bridge

	 Intent

 Decoupling the interface from implementation

	 Motivation

 Used to hide the implementation from the client.

Avoid permanent binding between the client and
implementation.

21

Bridge

� Applicability

 Avoid a permanent binding between an abstraction

and its implementation

 both the abstractions and their implementations

should be independently extensible by subclassing

 changes in the implementation of an abstraction

should have no impact on the clients; that is, their
code should not have to be recompiled

 you want to hide the implementation of an
abstraction completely from clients (users)

22

Bridge

Abstraction

operation()

I mplementor

operationImpl()

ConcreteI mplA

operationImpl()

ConcreteI mplB

operationImpl()

imp.operationImpl()

Client

23

Behavioural Patterns

� State
� An object whose behaviour depends on state

� Observer
� Dependents update automatically when a

subject changes
� I terator

� Aggregate elements are accessed
sequentially

24

When to use patterns

� Solutions to problems that recur with
variations.

� No need to reuse if the problem occurs only
once.

� Solutions that require several steps.
� Not all problems need all steps
� Patterns can be an overkill is problems have

simple solutions.

