
1

Sequence Diagrams
and Collaboration Diagrams

2

Object Oriented Design

� Design consists of the following steps :

� Refine the class diagram.

� Draw the interaction diagrams for the
system.

� Sequence Diagram

� Collaboration Diagram

� I f objects go through complex state
transitions – statechart diagrams

� Do the above steps iteratively as needed.

3

Sequence Diagram

� Shows how objects communicate with each
other over time.

� That is, sequence diagrams are used to model object
interactions arranged in time sequence and to
distribute use case behavior to classes.

� They can also be used to illustrate all the paths a
particular use case can ultimately produce.

� The sequence diagram consists of Active
Objects, Messages represented as solid-line
arrows, and Time represented as a vertical
progression.

4

Sequence Diagram - Objects

� A life line illustrates what is happening to
an object in a chronological fashion.

:Name

Life line

Activation

Object

5

Sequence Diagram – Time &
Messages

� Messages are used to illustrate communication between
different active objects of a sequence diagram.

:Name1 :Name2

Message Two

Actor
Message One

6

Types of Messages

� Synchronous (flow interrupt until the message
has completed.

� Asynchronous (don’t wait for response)

� Flat – no distinction between sysn/async

� Return – control flow has returned to the caller.

7

Sequence Diagram – Compilation

:Compiler Linker
Actor

Compile

FileSystem

Load Files

Save OBJ Files

Compile files

Link

Load OBJ files

Link OBJ files

Write EXE file

8

Branching Flow: flow goes to different
objects [if condition is met]

:Editor FileSystem

Load File

:BinaryViewer :TextViewer

[text file]
[binary file]

9

Alternative Flow: flow changes to alternative
lifeline branch of the same object

Editor
Actor

Exit App

FileSystem

[delete file]

[save file]

10

Sequence diagram -example

� Use case

� Add Subject Use Case to URS (University Record
System):

� Scenario

� Scenario 1 : Subject gets added successfully.

� Scenario 2 : Adding the subject fails because
the subject is already in the database.

11

System Design Principles

� System input can take different forms.
E.g.

� From a graphical user interface

� From a command file

� URS system should be designed such that
the functionality can be re-used.

� Command reading and functionality
implementation have to be separated.

12

Reading from a command file -
example

class URS{
public static void main(String[] args){

URSDatabase u = new URSDatabase();
/ /Read command from file;
while (not end of file) {

u.procCommand(cmd);
/ /Read next commad;

}
/ /Close file

}
}

13

execute()

Sequence Diagram – URS Add Subject
Scenario

u:URSDatabase

procCmd(cmd)

sub1:Subject
Subject(id,name)

<< create >>

parseCommand(cmd)

addSubject(sub1)

{ transient}

a:AddSubCmd<< create >>

[if cmdN = ADDSUB]
AddSubCmd(u,cmdA)

14

Creating and Deleting objects

c:Client

:Transaction

p: ODBProxy

setVales(a,d,3,4)

< < destroy> >

< < create> >

committed

setAction(a, d, 0)

{ transient}

15

Collaboration Diagrams

16

Collaboration Diagrams

� Class diagrams indicates what classes are part
of our system, what they offer, how they relate,
but they don’t tell us how they communicate.

� Collaboration diagrams show (used to model)
how objects interact and their roles.

� They are very similar to sequence diagrams

� Sequence Diagrams are arranged according to
Time.

� Collaboration Diagrams represent the structural
organization of object.

� [Both sequence and collaboration diagrams are
called interaction diagrams] 17

Collaboration Diagram – URS Add
Subject Scenario

u:URSDatabase

< < self> >

a:AddSubCmd

2:[if cmdN = ADDSUB]
AddSubCmd(u,cmdA)

<< local>>

{new}

{ transient}

3: execute()

3.2: addSubject(sub1)

1:parseCommand(cmd)

procCmd(cmd)

sub1:Subject

3.1: Subject(id,name)
{new}

18

Collaboration Diagram – URS Add
Subject Scenario

u:URSDatabase

< < self> >

1:parseCommand(cmd)

procCommand(cmd)

class URSDatabase{
private String cmdN;
private String cmdA;
private parseCommand(String cmd){

cmdN = ….
cmdA = ….

}
public procCommand(String cmd){

parseCommand(cmd);
}

}

19

Collaboration Diagram – URS Add
Subject Scenario

u:URSDatabase a:AddSubCmd2: AddSubCmd(u,cmdA)

{new}

{ transient}

class URSDatabase{
private String cmdN;
private String cmdA;

public procCommand(String cmd){
parseCommand(cmd);
if (cmdN = = ADDSUB){

AddSubCmd a = new AddSubCmd(u,cmdA);
}

}
} 20

Collaboration Diagram – URS Add
Subject Scenario

class abstract Command {
protected String cmd;
protected URSDatabase u;
public abstract void execute();

}

class AddSubCmd extends Command{
public AddSubCmd(URSDatabase urs, String cmd){

u = urs;
/ / parse command and set the arguments

}
public void execute(){

/ / implement here
}

}

21

Collaboration Diagram – URS Add
Subject Scenario

u:URSDatabase a:AddSubCmd
<< local>>

3: execute()

class URSDatabase{
private String cmd;
public procCommand(String cmd){

parseCommand(0);
if (cmd = = ADDSUB){

AddSubcmd a = new AddSubCmd(……);
}
a.execute();

}
}

22

Collaboration Diagram – URS Add
Subject Scenario

a:AddSubCmd

sub1:Subject

3.1: Subject(id,name)

class AddSubCmd{
URSDatabase u;

public execute(){

subject sub1 = new Subject(id,name);

}
}

23

Collaboration Diagram – URS Add
Subject Scenario

u:URSDatabase a:AddSubCmd3.2: addSubject(sub1)

class AddSubCmd{
URSDatabse u;
public execute(){

subject sub1 = new Subject(……);
u.addSubject(sub1);

}
}

24

Collaboration Diagram – URS Add
Subject Scenario

class URSDatabase{
private String cmd;
private Hashtable subjectHash = new HashTable();
public procCommand(String cmd){

parseCommand(0);
if (cmd = = ADDSUB){

AddSubcmd a = new AddSubCmd(……);
}
a.execute();

}
public addSubject(Subject sub);
{

subjectHash.put(sub.getKey(), sub);
}

}

25

URS -High Level Class Diagram

URSDatabase

UniversityMember

AcademicStaff Student

Subject

1

*
has

1

*

has

teaches

0..3

1

takes *

0…10

26

Collaboration Diagrams

� Collaborations Diagrams show transient
links that exists between objects.

� <<self>> - A message from object to itself

� << local>> - A message sent due to the
object begin defined as a local variable in
the method.

� <<parameter>> - The object reference was
sent as a parameter to the method.

� <<global>> The object is global.

27

Use Case Vs Scenarios

� Use case

� Enroll Subject Use Case:

� Scenario

	 Scenario 1 : Student is enrolled for the
subject.

	 Scenario 2 : Enrollment fails since the
student is already enrolled in 10 subjects.

28

Sequence Diagram – Enroll Student for
subject successfully

u:URSDatabase

procCmd(cmd)
parseCommand(cmd)

execute()

{ transient}

a:AssgSubCmd<< create >>

AssgSubCmd(u,cmdA)

getStudent(id)

return stu

getSubject(subId)

return sub
[if stu != NULL and sub != NULL]

stu:Student

addSubject(sub)

29

Collaboration Diagram – Enroll Student
in Subject Scenario

u:URSDatabase

{new}

a:AssgSubCmd

2:AddSubCmd(u,cmdA)

{ transient}

<< local>>

3: execute()

3.1: stu: =getStudent(id)

< < self> >

1:parseCommand()

procCmd(cmd)

stu:Student

3.3: [stu != NULL and
sub!= NULL] :

addSubject(sub){parameter}

3.2: sub: = getSubject(subId)

30

Collaboration Diagram – Enroll Student
in Subject subject - implementation

u:URSDatabase

{new}

a:AssgSubCmd

{ transient}

<< local>>

3: execute()

3.1: stu: =getStudent(id)

procCmd(cmd)

stu:Student

3.3: [stu != NULL and
sub!= NULL] :

addSubject(sub){parameter}

3.2: sub: = getSubject(subId)

class AssgSubCmd{
private URSDatabase u;
public execute(){

Student stu = u.getStudent(id);
Subject sub = u.getSubject(subId);
if (stu != null && sub != null){

stu.addSubject(sub);
}

}
}

31

Sequence Diagram – Enroll Student for
subject - Failure

u:URSDatabase

procCmd(cmd)
parseCommand()

execute()

{ transient}

a:AssgSubCmd<< create >>

AssgSubCmd(u,cmd)

[if stu != NULL
and sub != NULL]

stu:Student

addSubject(sub)

getNumSubjects()

return num

Excp
[num >= 10]

return e

