
1

UML and Classes, Objects and
Relationships [1]

Defining Domain Models Using
Class Diagrams

2

Agenda

� Recap:
� Phases of software design and Unified Process
� Object Oriented Design and Techniques

� UML Notations for Modeling Classes
� Class Relationships and UML Notations

� Association
� Generalization
� Realization
� Dependency

3

Software Development Process and
Unified Modeling Language (UML)

� A software development process is a set of phases that are
followed to bring a product or a system from conception to
delivery.

� In the Unified Process, there are four of these phases:
� Inception (Analysis phase)

� identify the system we are going to develop, including what it contains and
its business case.

� UML: use-case diagrams
� Elaboration (Design phase):

� perform detailed design and identify the foundation of system from “use
case diagram”, which eventually lead to classes.

� UML: classes, objects, class diagrams, sequence diagram, collaboration
diagrams etc.

� Construction (Implementation phase): write software using Java/C+ +
� the actual building of the product from the design of the system.

� Transition (Rolling out phase): Deliver the system/product to the
users. Includes maintenance, upgrades, and so on until phasing out.

4

Object Oriented Design (OOD)

� OOD is the technique used to architect software with
groups of classes that interact with one another to
solve a problem.

� To qualify as an OOD, a few requirements need to be
met.

� The three fundamental principles are essential for an
OOD to exist:

� Classes (abstraction and encapsulation)
� Inheritance
� Polymorphism

� + OO notions: packages, exceptions, streams, threads,
components and events (asynchronous notifications),
and communicators (sockets).

5

Modeling a class in UML

� When modeling a class in UML, we have a lot of
flexibility.

� The same class can be modeled in four
different ways:

� With no attributes or operations shown
� With only the attributes shown
� With only the operations shown
� With both the attributes and operations shown

� The name of the class is always the first
component of the class box; in fact, it is the
only required component, as we have seen in
our earlier discussion (OOP in Java).

6

Classes (with no members)

ClassName

Circle

7

Notes

� Class - The rectangle is the icon for the class. The
name of the class is, by convention, a word with an
initial uppercase letter. I t appears near the top of the
rectangle. I f your class name has more than one word
name, then join the words together and capitalize the
first letter of the every word.

8

Classes (with attributes and
operations)

attr1:type1
attr2:type2= “def”

ClassName

centreX:Int
centreY:Int= 0

Circle

attr1:type1
attr2:type2= “def”

ClassName

operation1()
operation2(args)
operation3() : ret type

centreX:Int
centreY:Int= 0

Circle

draw()
move(Int X, Int Y)

9

Notes

� Attribute - An attribute is a property of a class. I t describes a
range of values that the property may hold in objects of the class.
A class may have zero or more attributes. A one-word attribute
name is written in lowercase letter. I f the name consists of more
than one word, the words are joined and each word other than the
first word begins with an uppercase letter. The list of attribute
names begins below a line separating them from the class name.

� Operations : An operation is something that a class can do, or
that you (or another class) can do to a class. Like an attribute
name, an operation’s name is written in lowercase letter. I f the
name consists of more than one word, the words are joined and
each word except the first word begins with an uppercase letter.
The list of operations begins below a line separating operations
from the attributes.

10

Class Visibility

� public level +
� protected level #
� private level -

- centreX:Int
- centreY:Int= 0

Circle

+ draw()
move(Int X, Int Y)

11

Notes

� Visibility - Visibility applies to attributes or operations,
and specifies the extent to which other classes can use
a given class’s attributes or operations. Three levels of
visibility are possible (last symbols are used in UML
classes to indicate different levels of visibility):

� public level - usability extends to other classes +
� protected level - usability is open only to classes that

inherit from original class #
� private level - only the original class can use the

attribute or operation -

12

Class Multiplicity

� A multiplicity in a class specifies the number of
instances (objects) of that class that can exist
simultaneously.

� Only one Library object is allowed in the system
(referred to as a singleton object).

� Default multiplicity is 0 or more (if not
specified)

Library
1

13

Class - Implementation

public class Circle {

private int centreX, centreY; // centre of the circle

//Methods to return circumference and area
protected double move() {

// Implementation here
}
public double draw() {

// Implementation here
}

}
14

Objects: Instances of Classes

d1: Department : Department

d1: Department

name = “Sales”
deptNo = 1

: Department

name = “Sales”
deptNo = 1

(a) (b)

(c) (d)

15

Notes

� Figures (a)-(d) show four possible
representations of objects.

	 Top –
� objectName:ClassName – underlined or
� :ClassName – underlined

	 Bottom –
� Attribute names and values.

16

Classes, Objects, and Packages

� Packages are a way of grouping classes into common
categories.

� Classes and Objects are modeled when showing the
package they belong to. Classes and objects will
interact with classes and objects of different
packages—this is how packages are tied together to
create a system.

� A package is expressed by appending the name of
package and a double colon before the class name in
either a class or an object.

PackageName::ClassName

ObjectName:Packagename::ClassName

17

Class Relationships

� Classes can related to each other through
different relationships:

	 Association (delegation)
	 Generalization (inheritance)
	 Realization (interfaces)
	 Dependency

18

Association

� Association describes a link, a link being
a connection among objects between
classes.

� Association is shown by a solid line
between classes.

19

Association - Example

� A Person works for a Company.

Person Company
employee employer

works for

Association Name

Role

20

Association - Properties

� Name

 Name of the association

� Role

 The specific role of the association

� Multiplicity

 Indicates the number of objects that are connected

� Type

 Plain association, aggregation, composition

� Direction

 Direction can also be shown for a association

21

Notes

Name : “works for” Is the name of the relationship.

Role : Person plays the role employee and the Company
plays the role employer.

Multiplicity : Many employees to one company.

Type : This shows a plain association (normally referred
to as association)

22

Association - Multiplicity

� Multiplicity on association specify properties of
the number of links that can exist between
instances (objects) of the associated classes.

 That is, it indicates how many objects of one class
relate to one object of another class. I t is indicated
by a single number or a range of numbers.

� We can add multiplicity on either end of class
relationship by simply indicating it next to the
class where the relationship enters.

Class1 Class2
Association name

multiplicitymultiplicity

23

Association - Multiplicity

� A Student can take up to five Courses.
� Student has to be enrolled in at least one course.
� Up to 300 students can enroll in a course.
� A class should have at least 10 students.

Student Course
takes10..300 1..5

24

Association - Multiplicity

� A teacher teaches 1 to 3 courses (subjects)
� Each course is taught by only one teacher.
� A student can take between 1 to 5 courses.
� A course can have 10 to 300 students.

Teacher Course
teaches 1..3

Association – Multiplicity

1

Students
takes

1..5

10..300

25

Association - Multiplicity

� Company can have many employees. An employee can
only work for one company.

Person Company
employee

works for

employer

1

Association - Multiplicity

*

John: Person

James: Person

Microsoft: Company

26

Association - Multiplicity
class Company{

Vector employee;

public Company(){

employee = new Vector();
}

public static void addEmployee(Employee emp){

employee.addElement(emp);
}

public static void removeEmployee(Employee emp){

empoyee.removeElement(emp);
}

}

class Employee{
………

}

Association - Implementation

27

Summary

� Recap:

 Phases of software design and Unified Process

 Object Oriented Design and Techniques

� UML Notations for Modeling Classes
� Class Relationships and UML Notations

 Association

 Generalization

 Realization

 Dependency

