
1

Classes and Objects in Java

Constructors, Overloading, Static
Members

2

Refer to the Earlier Circle Program

// Circle.java: Contains both Circle class and its user class
/ /Add Circle class code here
class MyMain
{

public static void main(String args[])
{

Circle aCircle; / / creating reference
aCircle = new Circle(); / / creating object
aCircle.x = 10; / / assigning value to data field
aCircle.y = 20;
aCircle.r = 5;
double area = aCircle.area(); / / invoking method
double circumf = aCircle.circumference();
System.out.println("Radius= "+ aCircle.r+ " Area= "+ area);
System.out.println("Radius= "+ aCircle.r+ " Circumference = "+ circumf);

}
}

[raj@mundroo]%: java MyMain
Radius= 5.0 Area= 78.5
Radius= 5.0 Circumference = 31.400000000000002

3

Better way of Initialising or Access
Data Members x, y, r

� When there too many items to update/access
and also to develop a readable code, generally
it is done by defining specific method for each
purpose.

� To initialise/Update a value:
� aCircle.setX(10)

� To access a value:
� aCircle.getX()

� These methods are informally called as
Accessors or Setters/Getters Methods.

4

Accessors – “Getters/Setters”

public class Circle {
public double x,y,r;

//Methods to return circumference and area
public double getX() { return x;}
public double getY() { return y;}
public double getR() { return r;}
public double setX(double x_in) { x = x_in;}
public double serY(double y_in) { y = y_in;}
public double setR(double r_in) { r = r_in;}

}

5

How does this code looks ? More
readable ?

// Circle.java: Contains both Circle class and its user class
/ /Add Circle class code here
class MyMain
{

public static void main(String args[])
{

Circle aCircle; / / creating reference
aCircle = new Circle(); / / creating object
aCircle.setX(10);
aCircle.setY(20);
aCircle.setR(5);
double area = aCircle.area(); / / invoking method
double circumf = aCircle.circumference();
System.out.println("Radius= "+ aCircle.getR()+ " Area= "+area);
System.out.println("Radius= "+ aCircle.getR()+ " Circumference = "+ circumf);

}
}

[raj@mundroo]%: java MyMain
Radius= 5.0 Area= 78.5
Radius= 5.0 Circumference = 31.400000000000002

6

Object Initialisation

� When objects are created, the initial value of data fields is
unknown unless its users explicitly do so. For example,

� ObjectName.DataField1 = 0; / / OR
� ObjectName.SetDataField1(0);

� In many cases, it makes sense if this initialisation can be carried
out by default without the users explicitly initialising them.

� For example, if you create an object of the class called “Counter”, it is
natural to assume that the counter record-keeping field is initialised to
zero unless otherwise specified differently.

class Counter
{

int CounterIndex;
…

}
Counter counter1 = new Counter();

� What is the value of “counter1.CounterIndex” ?
� In Java, this can be achieved though a mechanism called

constructors.

7

What is a Constructor?

� Constructor is a special method that gets invoked
“automatically” at the time of object creation.

� Constructor is normally used for initializing objects with
default values unless different values are supplied.

� Constructor has the same name as the class name.
� Constructor cannot return values.
� A class can have more than one constructor as long as

they have different signature (i.e., different input
arguments syntax).

8

Defining a Constructor
� Like any other method

� Invoking:
� There is NO explicit invocation statement

needed: When the object creation statement
is executed, the constructor method will be
executed automatically.

public class ClassName {

// Data Fields…

// Constructor
public ClassName()
{

// Method Body Statements initialising Data Fields
}

//Methods to manipulate data fields
}

9

Defining a Constructor: Example
public class Counter {

int CounterIndex;

// Constructor
public Counter()
{

CounterIndex = 0;
}
//Methods to update or access counter
public void increase()
{

CounterIndex = CounterIndex + 1;
}
public void decrease()
{

CounterIndex = CounterIndex - 1;
}
int getCounterIndex()
{
return CounterIndex;

}
}

10

Trace counter value at each
statement and What is the output ?

class MyClass {
public static void main(String args[])
{

Counter counter1 = new Counter();
counter1.increase();
int a = counter1.getCounterIndex();
counter1.increase();
int b = counter1.getCounterIndex();
if (a > b)

counter1.increase();
else

counter1.decrease();

System.out.println(counter1.getCounterIndex());
}

}

11

A Counter with User Supplied Initial
Value ?

� This can be done by adding another
constructor method to the class.
public class Counter {

int CounterIndex;

// Constructor 1
public Counter()
{

CounterIndex = 0;
}
public Counter(int InitValue)
{

CounterIndex = InitValue;
}

}

// A New User Class: Utilising both constructors
Counter counter1 = new Counter();

Counter counter2 = new Counter (10);

12

Adding a Multiple-Parameters
Constructor to our Circle Class

public class Circle {
public double x,y,r;

// Constructor
public Circle(double centreX, double centreY,

double radius)
{

x = centreX;
y = centreY;
r = radius;

}
//Methods to return circumference and area
public double circumference() { return 2*3.14*r; }
public double area() { return 3.14 * r * r; }

}

13

Constructors initialise Objects

� Recall the following OLD Code Segment:
Circle aCircle = new Circle();
aCircle.x = 10.0; // initialize center and radius
aCircle.y = 20.0
aCircle.r = 5.0;

aCircle = new Circle() ;

At creation time the center and
radius are not defined.

These values are explicitly set later.

14

Constructors initialise Objects

� With defined constructor

Circle aCircle = new Circle(10.0, 20.0, 5.0);

aCircle = new Circle(10.0, 20.0, 5.0) ;

aCircle is created with center (10, 20)
and radius 5

15

Multiple Constructors

� Sometimes want to initialize in a number
of different ways, depending on
circumstance.

� This can be supported by having multiple
constructors having different input
arguments.

16

Multiple Constructors

public class Circle {
public double x,y,r; //instance variables
// Constructors
public Circle(double centreX, double cenreY, double radius) {

x = centreX; y = centreY; r = radius;
}
public Circle(double radius) { x=0; y=0; r = radius; }
public Circle() { x=0; y=0; r=1.0; }

//Methods to return circumference and area
public double circumference() { return 2*3.14*r; }
public double area() { return 3.14 * r * r; }

}

17

Initializing with constructors

public class TestCircles {

public static void main(String args[]){
Circle circleA = new Circle(10.0, 12.0, 20.0);
Circle circleB = new Circle(10.0);
Circle circleC = new Circle();

}
}

circleA = new Circle(10, 12, 20) circleB = new Circle(10)

Centre = (0,0)
Radius= 10

circleC = new Circle()

Centre = (0,0)
Radius = 1

Centre = (10,12)
Radius = 20

18

Method Overloading

� Constructors all have the same name.
� Methods are distinguished by their signature:

� name
� number of arguments
� type of arguments
� position of arguments

� That means, a class can also have multiple
usual methods with the same name.

� Not to confuse with method overriding (coming
up), method overloading:

19

Polymorphism

� Allows a single method or operator associated
with different meaning depending on the type
of data passed to it. I t can be realised through:

� Method Overloading
� Operator Overloading (Supported in C+ + , but not in

Java)
� Defining the same method with different

argument types (method overloading) -
polymorphism.

� The method body can have different logic
depending on the date type of arguments.

20

Scenario

� A Program needs to find a maximum of two
numbers or Strings. Write a separate function
for each operation.

� In C:
� int max_int(int a, int b)
� int max_string(char * s1, char * s2)
� max_int (10, 5) or max_string (“melbourne”, “sydney”)

� In Java:
� int max(int a, int b)
� int max(String s1, String s2)
� max(10, 5) or max(“melbourne”, “sydney”)

� Which is better ? Readability and intuitive wise ?

21

A Program with Method Overloading
// Compare.java: a class comparing different items

class Compare {

static int max(int a, int b)

{

if(a > b)

return a;

else

return b;

}

static String max(String a, String b)

{

if(a.compareTo (b) > 0)

return a;

else

return b;

}

public static void main(String args[])

{

String s1 = "Melbourne";

String s2 = "Sydney";

String s3 = "Adelaide";

int a = 10;

int b = 20;

System.out.println(max(a, b)); // which number is big

System.out.println(max(s1, s2)); // which city is big

System.out.println(max(s1, s3)); // which city is big

}

}

22

The New this keyword

� this keyword can be used to refer to the object itself.
I t is generally used for accessing class members
(from its own methods) when they have the same
name as those passed as arguments.

public class Circle {
public double x,y,r;
// Constructor

public Circle (double x, double y, double r) {
this.x = x;
this.y = y;
this.r = r;

}
//Methods to return circumference and area

}

23

Static Members

� Java supports definition of global methods and
variables that can be accessed without creating objects
of a class. Such members are called Static members.

� Define a variable by marking with the static methods.
� This feature is useful when we want to create a

variable common to all instances of a class.
� One of the most common example is to have a variable

that could keep a count of how many objects of a class
have been created.

� Note: Java creates only one copy for a static variable
which can be used even if the class is never
instantiated.

24

Static Variables
� Define using static:

� Access with the class name (ClassName.StatVarName):

public class Circle {
// class variable, one for the Circle class, how many circles
public static int numCircles;

//instance variables,one for each instance of a Circle
public double x,y,r;
// Constructors...

}

nCircles = Circle.numCircles;

25

Static Variables - Example
� Using static variables:

public class Circle {
// class variable, one for the Circle class, how many circles
private static int numCircles = 0;
private double x,y,r;

// Constructors...
Circle (double x, double y, double r){

this.x = x;
this.y = y;
this.r = r;
numCircles++;

}
}

26

Class Variables - Example
� Using static variables:

public class CountCircles {

public static void main(String args[]){
Circle circleA = new Circle(10, 12, 20); // numCircles = 1
Circle circleB = new Circle(5, 3, 10); // numCircles = 2

}
}

circleA = new Circle(10, 12, 20) circleB = new Circle(5, 3, 10)

numCircles

27

Instance Vs Static Variables

� Instance variables : One copy per object.
Every object has its own instance
variable.

� E.g. x, y, r (centre and radius in the circle)

� Static variables : One copy per class.
� E.g. numCircles (total number of circle

objects created)

28

Static Methods

� A class can have methods that are defined as
static (e.g., main method).

� Static methods can be accessed without using
objects. Also, there is NO need to create
objects.

� They are prefixed with keyword “static”
� Static methods are generally used to group

related library functions that don’t depend on
data members of its class. For example, Math
library functions.

29

Comparator class with Static methods
/ / Comparator.java: A class with static data items comparision methods
class Comparator {

public static int max(int a, int b)
{

if(a > b)
return a;

else
return b;

}

public static String max(String a, String b)
{

if(a.compareTo (b) > 0)
return a;

else
return b;

}
}

class MyClass {
public static void main(String args[])
{

String s1 = "Melbourne";
String s2 = "Sydney";
String s3 = "Adelaide";

int a = 10;
int b = 20;

System.out.println(Comparator.max(a, b)) ; / / which number is big
System.out.println(Comparator.max(s1, s2)) ; / / which city is big
System.out.println(Comparator.max(s1, s3)) ; / / which city is big

}
}

Directly accessed using ClassName (NO Objects)

30

Static methods restrictions

� They can only call other static methods.
� They can only access static data.
� They cannot refer to “this” or “super”

(more later) in anyway.

31

Summary

� Constructors allow seamless initialization of
objects.

� Classes can have multiple methods with the
same name [Overloading]

� Classes can have static members, which serve
as global members of all objects of a class.

� Keywords: constructors, polymorphism,
method overloading, this, static variables, static
methods.

