Classes and Objects Iin Java

Constructors, Overloading, Static
Members

Refer to the Earlier Circle Program

/I Circle.java: Contains both Circle class and its user class
//Add Circle class code here
class MyMain

{

public static void main(String args[])
{
Circle aCircle; // creating reference
aCircle = new Circle(); // creating object
aCircle.x = 10; // assigning value to data field
aCircle.y = 20;
aCircle.r = 5;
double area = aCircle.area(); // invoking method
double circumf = aCircle.circumference();
System.out.printin("Radius="+aCircle.r+" Area="+area);
System.out.printin("Radius="+aCircle.r+" Crcumference ="+ circumf);

[raj@mundroo]%: java MyMain
Radius=5.0 Area=78.5
Radius=5.0 Circumference =31.400000000000002

Better way of Initialising or Access
Data Members X, vy, r

When there too many items to update/access

and also to develop a readable code, generally
It Is done by defining specific method for each

purpose.

To Initialise/Update a value:
= aCircle.setX(10)

To access a value:
= aCircle.getX()

These methods are informally called as
Accessors or Setters/ Getters Methods.

Accessors — “Getters/ Setters”

public class Circle {
public double x,y,r;

/IMethods to return circumference and area
public double getX() { return x;}

public double getY () { returny;}

public double getR() { returnr;}

public double setX (double x_in) { x = x_in;}
public double serY (doubley in){ y=vy in;}
public double setR(doubler in) { r=r_in;}

How does this code looks ? More
readable ?

/I Circle.java: Contains both Circle class and its user class
//Add Circle class code here
class MyMain

{

public static void main(String args[])
{
Circle aCircle; // creating reference
aCircle = new Circle(); // creating object
aCircle.setX(10);
aCircle.setY(20);
aCircle.setR(5);
double area = aCircle.area(); // invoking method
double circumf = aCircle.circumference();
System.out.printin("Radius="+aCircle.getR()+" Area="+area);
System.out.printin("Radius="+aCircle.getR()+" Crcumference ="+ circumf);

[raj@mundroo]%: java MyMain
Radius=5.0 Area=78.5
Radius=5.0 Circumference =31.400000000000002

Object Initialisation

When objects are created, the initial value of data fields is
unknown unless its users explicitly do so. For example,

= ObjectName.DataFieldl = 0; // OR

= ObjectName.SetDataFeld1(0);

In many cases, it makes sense if this initialisation can be carried
out by default without the users explicitly initialising them.
= For example, if you create an object of the class called “Counter”, it is

natural to assume that the counter record-keeping field is initialised to
zero unless otherwise specified differently.

class Counter

{

int Counterlndex;

}

Counter counterl = new Counter();

= What is the value of “counterl.Counterlndex” ?

In Java, this can be achieved though a mechanism called
constructors.

What I1s a Constructor?

Constructor is a special method that gets invoked
“*automatically” at the time of object creation.

Constructor is normally used for initializing objects with
default values unless different values are supplied.

Constructor has the same name as the class name.
Constructor cannot return values.

A class can have more than one constructor as long as
they have different signature (i.e., different input
arguments syntax).

Defining a Constructor
Like any other method

public class O assNane {
/1l Data Fields..

// Constructor
public C assNanme()

{
}

//Nethods to manipulate data fields
+

/'l Method Body Statenents initialising Data Fiel ds

| nvoking:

= There is NO explicit invocation statement
needed: When the object creation statement
IS executed, the constructor method will be
executed automatically.

Defining a Constructor: Example

public class Counter ({
i nt Count er | ndex;

/| Constructor
public Counter()

{
}

/| Met hods to update or access counter
public void increase()

Count er|l ndex = O;

{ Count erl ndex = Counterlndex + 1;
Lublic voi d decrease()

{ Count erl ndex = Counterl ndex - 1;
?nt get Count er | ndex()

{ return Counterl ndex;

}

Trace counter value at each
statement and What Is the output ?

class MyClass {
public static void main(String args|])
{
Counter counterl = new Counter();
counterl.increase();
int a = counterl.getCounterindex();
counterl.increase();
int b = counterl.getCounterindex();
if(a>Db)
counterl.increase();
else
counterl.decrease();

System.out.printin(counterl.getCounterindex());

10

A Counter with User Supplied Initial
Value ?

This can be done by adding another
constructor method to the class.

public class Counter ({
i nt Count er | ndex;

/'l Constructor 1
public Counter()

{
Count er|l ndex = O;
}
public Counter(int InitValue)
{
Count erl ndex = I nitVal ue;
}

}

/1 A New User Cl ass: Uilising both constructors
Counter counterl = new Counter();

Counter counter2 = new Counter (10);

11

Adding a Multiple-Parameters
Constructor to our Circle Class

public class Circle {
public double x,y,r;
// Constructor
public Circle(double centreX, double centreY,

double radius)
{
X = centreX;
y = centreyY,
r = radius,
}

/[IMethods to return circumference and area
public double circumference() { return 2*3.14*r; }
public double area() { return3.14* r * r; }

Constructors Initialise Objects

Recall the following OLD Code Segment:

Circle aCircle = new Circle();

aCircle.x = 10.0; // initialize center and radius
aCircley =20.0

aCircler =5.0;

aCircle = new Circle() ;

At creation time the center and
radius are not defined.

Q These values are explicitly set later.

13

Constructors initialise Objects

With defined constructor

Circle aCircle = new Circle(10.0, 20.0, 5.0);

aCircle = new Circle(10.0, 20.0, 5.0) ;

aCircle is created with center (10, 20)
and radius 5

14

Multiple Constructors

Sometimes want to initialize in a number
of different ways, depending on
circumstance.

This can be supported by having multiple
constructors having different input
arguments.

15

Multiple Constructors

public class Circle {
public double x,y,r; //instance variables
// Constructors
public Circle(double centreX, double cenreY, double radius) {
X = centreX; y = centreY; r = radius,
}
public Circle(double radius) { x=0; y=0; r = radius; }
public Circle() { x=0; y=0; r=1.0; }

/[IMethods to return circumference and area
public double circumference() { return 2*3.14*r; }
public double area() { return3.14* r * r; }

16

I nitializing with constructors

public class TestCircles {

public static void main(String args[]){
Circle circleA = new Circle(10.0, 12.0, 20.0);
Circle circleB = new Circle(10.0);
Circle circleC = new Circle();

}
}

circleA = new Circle(10, 12, 20) circleB = new Circle(10) circleC = new Circle()

... e N

Radius = 20 Centre = (0,0) Radius = 1
Radius=10

17

Method Overloading

Constructors all have the same name.

Methods are distinguished by their signature:
= Name

= number of arguments
= type of arguments
= position of arguments

That means, a class can also have multiple
usual methods with the same name.

Not to confuse with method overriding (coming
up), method overloading:

18

Polymorphism

Allows a single method or operator associatec
with different meaning depending on the type
of data passed to it. It can be realised through:
= Method Overloading

= Operator Overloading (Supported in C++, but not In

Java)

Defining the same method with different
argument types (method overloading) -
polymorphism.

The method body can have different logic
depending on the date type of arguments.

19

Scenario

A Program needs to find a maximum of two
numbers or Strings. Write a separate function
for each operation.
= |nC
= int max_int(int a, int b)
= int max_string(char *sl, char *s2)
= max_int (10, 5) or max_string (“melbourne”, “sydney”)
= |n Java:
= Int max(int a, int b)
= INnt max(String s1, String s2)
= max(10, 5) or max(“melbourne”, “sydney”)
= Which is better ? Readability and intuitive wise ?

20

A Program with Method Overloading

/1 Conpare.java: a class conparing different itens
cl ass Conpare {
static int max(int a, int b)
{
if(a>b)
return a;
el se
return b;
}
static String max(String a, String b)
{
if(a.conmpareTo (b) > 0)
return a;
el se
return b;

public static void main(String args[])
{

String s1 = "Ml bourne";

String s2 = "Sydney";

String s3 = "Adel ai de";

int a
int b

10;
20;

Systemout.println(max(a, b)); // which nunber is big
Systemout. println(max(sl, s2)); // which city is big
Systemout. println(max(sl, s3)); // which city is big

[.Y
T

The New this keyword

this keyword can be used to refer to the object itself.
It Is generally used for accessing class members
(from its own methods) when they have the same
name as those passed as arguments.

public class Circle {

public double x,y,r;

I/ Constructor

public Circle (double x, doubley, doubler) {
this.x = X;
thisy =v;
thisr=r;

}

/[IM ethods to return circumference and area

22

Static Members

Java supports definition of global methods and
variables that can be accessed without creating objects
of a class. Such members are called Static members.

Define a variable by marking with the static methods.

This feature Is useful when we want to create a
variable common to all instances of a class.

One of the most common example is to have a variable
that could keep a count of how many objects of a class
have been created.

Note: Java creates only one copy for a static variable
which can be used even if the class is never
Instantiated.

23

Static Variables

Define using static:

public class Circle {
/I class variable, one for the Circle class, how many circles
public static int numCircles,

/linstance variables,one for each instance of a Circle
public double x,y,r;
// Constructors...

Access with the class name (ClassName.StatVarName):

nCircles = Circle.numCircles;

24

Static Variables - Example

Using static variables:

public class Circle {
/I class variable, one for the Circle class, how many circles
private static int numCircles = 0;
private double x,y,r;

/[Constructors...
Circle (double x, doubley, double r){
this.x = X;
thisy =v;
thisr=r;
numcCircles++;

25

Class Variables - Example

Using static variables:

public class CountCircles {

public static void main(String argg[] {
Circle circleA = new Circle(10, 12, 20); // numCircles=1
CirclecircleB = new Circle(5, 3, 10); // numCircles= 2

circleA = new Circle(10, 12, 20)

/

circleB = new Circle(5, 3, 10)

/

numcCircles

-9

@-

26

|nstance Vs Static Variables

Instance variables : One copy per object.
Every object has its own Instance
variable.

= Eg. X, ¥, r (centre and radius in the circle)

Static variables : One copy per class.

= E.g. numCircles (total number of circle
objects created)

27

Static Methods

A class can have methods that are defined as
static (e.g., main method).

Static methods can be accessed without using
objects. Also, there is NO need to create
objects.

They are prefixed with keyword “static”

Static methods are generally used to group
related library functions that don’'t depend on
data members of its class. For example, Math
library functions.

28

Comparator class with Static methods

/1 Comparator.java: A class with static data items comparision methods
class Comparator {
public static int max(int a, int b)

{
if(a> b)
return a;
else
return b;
}
public static String max(String a, String b)
{
if(a.compareTo (b) > 0)
return a;
else
return b;
}

}

class MyClass {
public static void main(String args[])

{
String s1 = "Melbourne";
String s2 = "Sydney";
String s3 = "Adelaide";
inta= 10;
int b= 20;
System.out.println(Comparator.max(a, b)); // which number is big
System.out.println(Comparator.max(sl, s2)); // which city is big
System.out.println(Comparator.max(si, s3)); // which city is big
}
}

29

Static methods restrictions

They can only call other static methods.
They can only access static data.

They cannot refer to “this” or “super”
(more later) in anyway.

30

Summary

Constructors allow seamless initialization of
objects.

Classes can have multiple methods with the
same name [Overloading]

Classes can have static members, which serve
as global members of all objects of a class.

Keywords: constructors, polymorphism,
method overloading, this, static variables, static
methods.

31

