
1

Basic Java Constructs and Data
Types – Nuts and Bolts

Looking into Specific Differences
and Enhancements in Java

compared to C

2

Contents

� Hello World Program Statements Explained
� Java Program Structure in General
� Java Classes and Static Methods
� Data Types, Variables and Constants
� Java Comments and Documents
� Control Flow
� Reading from Keyboard
� Command Line Arguments Processing
� Summary and References

3

Hello World

// HelloWorld.java: Hello World program
import java.lang.*;
class HelloWorld
{

public static void main(String args[])
{

System.out.println(“Hello World”);
}

}

4

Hello World: Java and C

// HelloWorld.java: Hello World program

import java.lang.*;
class HelloWorld
{

public static void main(String args[])
{

System.out.println(“Hello World”);
}

}

/* helloworld.c: Hello World program */

#define <stdio.h>

void main(int argc, char *argv[])

{

printf(“Hello World\n”);

}

S1:
S2:
S3:

S4:

S6:

5

Program Processing

� Compilation
javac HelloWorld.java

results in HelloWorld.class

� Execution
java HelloWorld

Hello World

6

Closer Look at - Hello World
� The class has one method – main()

public static void main(String args[])
{

System.out.println(“Hello World”);
}

� Command line input arguments are passed in the
String array args[]

e.g java HelloWorld John Jane

args[0] – John args[1] – Jane

7

Closer Look at - Hello World

� import java.lang.* ;
� Java allows grouping of related classes into a package.
� I t allows different companies can develop different packages,

may even have same class and method names, but they differ
by package name:

� ibm.mathlib.*
� microsoft.mathlib.*
� Helps in managing name clash problems.

� Think of this package as library.
� “import” statement somewhat serves similar purpose as C’s

include
� I f you don’t add import statement, then you need utilise fully

qualified name.
� ibm.mathlib.sin()
� I f you do “import ibm.* ” then you can use mathlib.sin() instead.

8

Java imports java.lang.* by default

� So, You don’t need to import java.lang.*
� That means, you can invoke services of

java’s “lang” package classes/entities,
you don’t need to use fully qualified
names.

� We used System.out.println() instead of
� java.lang. System.out.println()

9

public static void main(String args[])

� public: The keyword “public” is an access
specifier that declares the main method as
unprotected.

� static: I t says this method belongs to the entire
class and NOT a part of any objects of class.
The main must always be declared static since
the interpreter users this before any objects are
created.

� void: The type modifier that states that main
does not return any value.

10

System.out.println(“Hello World”);

� java.lang.*
� All classes/ items in “lang” package of java package.

� System is really the java.lang.System class.

� This class has a public static field called out
which is an instance of the java.io.PrintStream
class. So when we write System.out.println(),
we are really invoking the println() method of
the “out” field of the java.lang.System class.

11

Java Program Structure

Documentation Section

Package Statement

Import Statements

Interface Statements

Class Declarations

Main Method Class
{
}

12

More Java: Classes and static
methods

// SquareRoot.java: compute square root of number

import java.lang.Math;

class SquareRoot
{

public static void main(String args [])
{

double x = 4;
double y;
y = Math.sqrt(x);
System.out.println("y= "+ y);

}
}

13

Basic Data Types
� Types

boolean either true or false
char 16 bit Unicode 1.1
byte 8-bit integer (signed)
short 16-bit integer (signed)
int 32-bit integer (signed)
long 64-bit integer (singed)
float 32-bit floating point (IEEE 754-1985)
double 64-bit floating point (IEEE 754-1985)

� String (class for manipulating strings)
� Java uses Unicode to represent characters

internally

14

Variables

� Local Variables are declared within the block of code

� Variable has a type preceding the name

� Initial value is set by initialization expressions.

type variableName = initialValue;

e.g. int x = 1;
� Variables can be defined just before their usage

(unlike C)
� e.g., for(int i = 0; i < 10; i+ +)

15

Constants

� Constants are similar to variables except that
they hold a fixed value. They are also called
“READ” only variables.

� Constants are declared with the reserved
word “final”.

final int MAX_LENGTH = 420;
final double PI = 3.1428;

� By convention upper case letters are used for
defining constants.

16

Declaring Constants - example

class CircleArea
{

public static void main(String args[])
{

final double PI = 3.1428;
double radius = 5.5; / / in cms
double area;

area = PI * radius * radius;

System.out.println("Circle Radius = "+ radius+ " Area= "+ area);
}

}

17

Comments

� English text scattered through the code
are comments

� JAVA supports 3 types of comments
/* * / - Usually used from multi-line

comments
/ / - Used for single line comments
/* * * / - Documentation comments

18

Javadoc

� Effort to make Java self-documenting

� True OOP style, encapsulate documentation
within code :)

� Comments beginning with /* * and ending
with * / can be extracted and turned into
html documentation

19

Control Flow

� Control Flow Statements in JAVA
� while loop

� for loop
� do-while loop

� if-else statement
� switch statement

� JAVA does not support a goto statement

20

� while loop

while (squared <= MAX) {

squared = lo * lo; // Calculate square

System.out.println(squared);

lo = lo + 1; /* Compute the new lo value */

}

Control Flow - Examples

21

Control Flow - Examples

� for loop

for (int i = 1; i < MAX; i++) {

System.out.println(i); // prints 1 2 3 4 5 …

}

22

� do-while loop

do {

squared = lo * lo; // Calculate square

System.out.println(squared);

lo = lo + 1; /* Compute the new lo value */

} while (squared <= MAX);

Control Flow - Examples

23

� if-else loop

if (i < 10) {

System.out.println(“i is less than 10”);

}

else {

System.out.println(“i is greater than or equal to 10”);

}

Control Flow - Examples

24

Control Flow - Examples

� switch statement
switch (c) {

case ‘a’:

System.out.println (“ The character is ‘a’”);

break;

case ‘b’;

System.out.println (“ The character is ‘b’”);

break;

default;

System.out.println (“ The character is not ‘a’ or ‘b’”);

break;

}

25

Reading from Keyboard

� As Java does not support a simple APIs for Keyboard Input, we
created a class called "Keyboard", which you can use in your
program. The Keyboard class facilitates keyboard input by
abstracting details about input parsing, conversions, and exception
handling. This class reads from standard input (keyboard) and
converts the characters into an appropriate type based on the
method you call. Some methods you can use are:

� Keyboard.readString()
� Keyboard.readWord()
� Keyboard.readChar()
� Keyboard.readBoolean()
� Keyboard.readInt()
� Keyboard.readLong()
� Keyboard.readFloat()
� Keyboard.readDouble()

26

Keyboard class Usage Example

� Simply copy the Keyboard.java file from:
http:/ /www.cs.mu.oz.au/254/Keyboard/keyboard.html
into your program directory and access its methods as if they are
standard methods. The Java complier will link them automatically.

� An Example Program:
// A class to execute one or more Keyboard methods
class Test
{

public static void main(String[] args)
{

System.out.print("Please enter a string: ");
String str = Keyboard.readString();
System.out.println("String = " + str);

System.out.print("Please enter an int number: ");
int numInt = Keyboard.readInt();
System.out.println("int = " + numInt);

}
}

27

Command Line Arguments

� Command line arguments provide one of the ways for supplying input
data at the time of execution instead of including them in the program.
They are supplied as parameters to the main() method:

public static void main(String args[])

� “args” is declared of an array of strings (aka string objects).
� args[0] is the first parameter, args[1] is the 2nd argument and so on

� The number of arguments passed identified by:
� args.length
� E.g. count = args.length;

� Example Invocation and values:
� java MyProgram hello melbourne
� args.length will be 2
� args[0] will be “hello” and args[1] will be “melborune”

28

Printing command line arguments

// ComLineTest.java: testing command line arguments
class ComLineTest
{

public static void main(String args[])
{

int count, i = 0;
String myString;
count = args.length;
System.out.println("Number of Arguments = "+ count);
while(i < count)
{

myString = args[i] ;
i = i + 1;
System.out.println(i + " : " + "Java is "+ myString+ " !");

}
}

}

+ concatenates strings or numbers

29

Execution Example

� java ComLineTest Simple Object_Oriented Distributed
Robust Secure Portable Multithread Dynamic

� The output of program will be:

Number of Arguments = 8
1 : Java is Simple !
2 : Java is Object_Oriented !
3 : Java is Distributed !
4 : Java is Robust !
5 : Java is Secure !
6 : Java is Portable !
7 : Java is Multithread !
8 : Java is Dynamic !

30

Summary

� We discussed meaning of statements in
“hello world” program

� We discussed various basic constructs
and syntax.

� Apart from OO specific items, most
keywords or constructs in Java have
similar meaning and usage style as C.

31

References

� Chapter 3: Overview of Java Language
� Chapters To Browse (if you have

forgotten C syntax/constructs):
� Chapter 4: Constants, Variables, and Data

Types
� Chapter 5: Operators and Expressions

� Chapter 6: Decision Making and Branching
� Chapter 7: Decision Making and Looping

