Software Life Cycle and Models

Rajkumar Buyya
Grid Computing and Distributed Systems Lab
Dept. of Computer Science and Software Engineering
University of Melbourne, Australia
http://www.buyya.com

Software Process

Software Process defines the way to
produce software. It includes

= Software life-cycle model

= Tools to use

= Individuals building software

Software life-cycle model defines how
different phases of the life cycle are
managed.

Phases of Software Life-cycle

Requirements
Specification (Analysis)
Design

Implementation
Integration
Maintenance
Retirement

Requirements

Assumption

= The software being considered is considered
economically justifiable.

Concept exploration

= Determine what the client needs, not what
the client wants

Document - Requirements Document

Specification (Analysis) Phase

From the customer requirements identify
what to build.

Specifications must not be
= Ambiguous

= Incomplete

= Contradictory

Document — Specification Document

Design Phase

From the specification identify /#ow to build.

Design involves two steps
= Architectural Design — Identify modules
= Detailed Design — Design each modules

Document — Architecture Document, Design
Document

Implementation Phase

Implement the detailed design in code.
Developer testing
= Unit testing

= Module testing

Document — Commented source code

Integration Phase

Combine the modules and test the
product as a whole.

Testing includes
= Product testing
= Acceptance testing

Document — Test cases and test results

Maintenance Phase

Any changes after the customer accepts the
system.

Maintenance phase is the most expensive
= Lack of documentation
= Regression testing

Document — Documented Changes, Regression
test cases

Retirement Phase

Good software is maintained

Sometimes software is rewritten from scratch

= Software is now un-maintainable because
» Adrastic change in design has occurred
= The product must be implemented on a totally new
= hardware/operating system
= Documentation is missing or inaccurate
» Hardware is to be changed—it may be cheaper to rewrite
» the software from scratch than to modify it

True retirement is a rare event

Life-Cycle Models

Build-and-fix model

Waterfall model

Rapid prototyping model
Incremental model

Extreme programming
Synchronize-and-stabilize model
Spiral model

Object-oriented life-cycle models
Comparison of life-cycle models

11

Build and Fix Model

T
e,

WEAR)
T e R |
! = o

. - ‘E N

._.|_i_ 1 | II
e

Notes

Most software is developed using build-and-fix model.
Basically there is no model.

= No specifications
= No design

This model is completely unsatisfactory and should not
be adopted.

Need life-cycle model
= “Game plan”

= Phases

= Milestones

13

Waterfall Model

Lz ﬁ el
II'_,:E.';H..-.»AH-'.H
=

Notes

Output from one phase is fed as input to the next
phase.

One phase is completed, documented and signed-off
before the next phase begins.
Advantages

= Each phase is well documented.

= Maintenance easier.

Disadvantages

= |f there is a mismatch between what the client wanted and was
is built this will not be known till the product is delivered.

15

P—
anme |

Notes

A prototype of the product is build rapidly and shown to
the client before the product is completely built.

Advantages :

= Any mismatches between requirement and the
product can be found early.

Disadvantages :

= Sometimes the prototype ends up being the final
product which results in quality, maintenance
problems.

17

Summary

Software Engineering is an important
discipline due to various aspects.

Analysis and Design are two very
important phases in the software
development lifecycle.

Reference

Stephen Schach, Gassical and Object-

Oriented Software Engineering with UML

and Java, Chapter 3, McGraw-Hill, New

York, USA.

= http://www.mhhe.com/engcs/ compsci/ schac
h5/samplech.mhtml

Any other book on software engineering

is also fine!

19

