Software Life Cycle and Models

Rajkumar Buyya
Grid Computing and Distributed Systems Lab
Dept. of Computer Science and Software Engineering
University of Melbourne, Australia
http://www.buyya.com

Software Process

- Software Process defines the way to produce software. It includes
 - Software life-cycle model
 - Tools to use
 - Individuals building software
- Software life-cycle model defines how different *phases* of the life cycle are managed.

2

Phases of Software Life-cycle

- Requirements
- Specification (Analysis)
- Design
- Implementation
- Integration
- Maintenance
- Retirement

Requirements

- Assumption
 - The software being considered is considered economically justifiable.
- Concept exploration
 - Determine what the client needs, not what the client wants
- Document Requirements Document

4

Specification (Analysis) Phase

- From the customer requirements identify what to build.
- Specifications must not be
 - Ambiguous
 - Incomplete
 - Contradictory
- Document Specification Document

Design Phase

- From the specification identify *how* to build.
- Design involves two steps
 - Architectural Design Identify modules
 - Detailed Design Design each modules
- Document Architecture Document, Design Document

Implementation Phase

- Implement the detailed design in code.
- Developer testing
 - Unit testing
 - Module testing
- Document Commented source code

Integration Phase

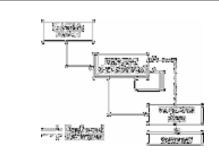
- Combine the modules and test the product as a whole.
- Testing includes
 - Product testing
 - Acceptance testing
- Document Test cases and test results

.

Maintenance Phase

- Any changes after the customer accepts the system.
- Maintenance phase is the most expensive
 - Lack of documentation
 - Regression testing
- Document Documented Changes, Regression test cases

Retirement Phase

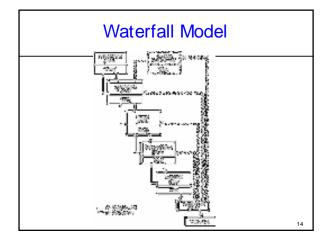

- Good software is maintained
- Sometimes software is rewritten from scratch
 - Software is now un-maintainable because
 - A drastic change in design has occurred
 - The product must be implemented on a totally new
 - hardware/operating system
 - Documentation is missing or inaccurate
 - Hardware is to be changed—it may be cheaper to rewrite
 - the software from scratch than to modify it
- True retirement is a rare event

10

Life-Cycle Models

- Build-and-fix model
- Waterfall model
- Rapid prototyping model
- Incremental model
- Extreme programming
- Synchronize-and-stabilize model
- Spiral model
- Object-oriented life-cycle models
- Comparison of life-cycle models

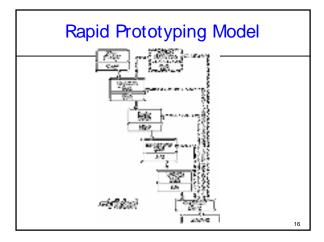
Build and Fix Model



12

Notes

- Most software is developed using build-and-fix model.
 Basically there is no model.
 - No specifications
 - No design
- This model is completely unsatisfactory and should not be adopted.
- Need life-cycle model
 - "Game plan"
 - Phases
 - Milestones


13

Notes

- Output from one phase is fed as input to the next phase.
- One phase is completed, documented and signed-off before the next phase begins.
- Advantages
 - Each phase is well documented.
 - Maintenance easier.
- Disadvantages
 - If there is a mismatch between what the client wanted and was is built this will not be known till the product is delivered.

15

Notes

- A prototype of the product is build rapidly and shown to the client before the product is completely built.
- Advantages :
 - Any mismatches between requirement and the product can be found early.
- Disadvantages :
 - Sometimes the prototype ends up being the final product which results in quality, maintenance problems.

Summary

- Software Engineering is an important discipline due to various aspects.
- Analysis and Design are two very important phases in the software development lifecycle.

18

Reference

- Stephen Schach, Classical and Object-Oriented Software Engineering with UML and Java, Chapter 3, McGraw-Hill, New York, USA.
 - http://www.mhhe.com/engcs/compsci/schac h5/samplech.mhtml
- Any other book on software engineering is also fine!