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Software Process

Software Process defines the way to
produce software. It includes

= Software life-cycle model

= Tools to use

= Individuals building software

Software life-cycle model defines how
different phases of the life cycle are
managed.

Phases of Software Life-cycle

Requirements
Specification (Analysis)
Design

Implementation
Integration
Maintenance
Retirement

Requirements

Assumption

= The software being considered is considered
economically justifiable.

Concept exploration

= Determine what the client needs, not what
the client wants

Document - Requirements Document

Specification (Analysis) Phase

From the customer requirements identify
what to build.

Specifications must not be
= Ambiguous

= Incomplete

= Contradictory

Document — Specification Document

Design Phase

From the specification identify /#ow to build.

Design involves two steps
= Architectural Design — Identify modules
= Detailed Design — Design each modules

Document — Architecture Document, Design
Document




Implementation Phase

Implement the detailed design in code.
Developer testing
= Unit testing

= Module testing

Document — Commented source code

Integration Phase

Combine the modules and test the
product as a whole.

Testing includes
= Product testing
= Acceptance testing

Document — Test cases and test results

Maintenance Phase

Any changes after the customer accepts the
system.

Maintenance phase is the most expensive
= Lack of documentation
= Regression testing

Document — Documented Changes, Regression
test cases

Retirement Phase

Good software is maintained

Sometimes software is rewritten from scratch

= Software is now un-maintainable because
» Adrastic change in design has occurred
= The product must be implemented on a totally new
= hardware/operating system
= Documentation is missing or inaccurate
» Hardware is to be changed—it may be cheaper to rewrite
» the software from scratch than to modify it

True retirement is a rare event

Life-Cycle Models

Build-and-fix model

Waterfall model

Rapid prototyping model
Incremental model

Extreme programming
Synchronize-and-stabilize model
Spiral model

Object-oriented life-cycle models
Comparison of life-cycle models
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Build and Fix Model
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Notes

Most software is developed using build-and-fix model.
Basically there is no model.

= No specifications
= No design

This model is completely unsatisfactory and should not
be adopted.

Need life-cycle model
= “Game plan”

= Phases

= Milestones
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Waterfall Model
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Notes

Output from one phase is fed as input to the next
phase.

One phase is completed, documented and signed-off
before the next phase begins.
Advantages

= Each phase is well documented.

= Maintenance easier.

Disadvantages

= |f there is a mismatch between what the client wanted and was
is built this will not be known till the product is delivered.
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Notes

A prototype of the product is build rapidly and shown to
the client before the product is completely built.

Advantages :

= Any mismatches between requirement and the
product can be found early.

Disadvantages :

= Sometimes the prototype ends up being the final
product which results in quality, maintenance
problems.
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Summary

Software Engineering is an important
discipline due to various aspects.

Analysis and Design are two very
important phases in the software
development lifecycle.
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