
1

Packages: Putting Classes
Together

2

Introduction

� The main feature of OOP is its ability to support the
reuse of code:

� Extending the classes (via inheritance)
� Extending interfaces

� The features in basic form limited to reusing the classes
within a program.

� What if we need to use classes from other programs
without physically copying them into the program under
development ?

� In Java, this is achieved by using what is known as
“packages”, a concept similar to “class libraries” in
other languages.

3

Packages

� Packages are Java’s way of grouping a number of
related classes and/or interfaces together into a single
unit. That means, packages act as “containers” for
classes.

� The benefits of organising classes into packages are:
� The classes contained in the packages of other

programs/applications can be reused.
� In packages classes can be unique compared with classes in

other packages. That two classes in two different packages can
have the same name. I f there is a naming clash, then classes
can be accessed with their fully qualified name.

� Classes in packages can be hidden if we don’t want other
packages to access them.

� Packages also provide a way for separating “design” from
coding.

4

Java Foundation Packages

� Java provides a large number of classes groped into different
packages based on their functionality.

� The six foundation Java packages are:
� java.lang

� Contains classes for primitive types, strings, math functions, threads, and
exception

� java.util
� Contains classes such as vectors, hash tables, date etc.

� java.io
� Stream classes for I /O

� java.awt
� Classes for implementing GUI – windows, buttons, menus etc.

� java.net
� Classes for networking

� java.applet
� Classes for creating and implementing applets

5

Using System Packages

� The packages are organised in a hierarchical structure.
For example, a package named “java” contains the
package “awt”, which in turn contains various classes
required for implementing GUI (graphical user
interface).

Graphics

Font

java

Image

…

awt

lang “java” Package containing
“lang”, “awt”,.. packages;
Can also contain classes.

awt Package containing
classes

Classes containing
methods

6

Accessing Classes from Packages

� There are two ways of accessing the classes stored in
packages:

� Using fully qualified class name
� java.lang.Math.sqrt(x);

� Import package and use class name directly.
� import java.lang.Math
� Math.sqrt(x);

� Selected or all classes in packages can be imported:

� Implicit in all programs: import java.lang.* ;
� package statement(s) must appear first

import package.class;
import package.*;

7

Creating Packages

� Java supports a keyword called “package” for creating
user-defined packages. The package statement must
be the first statement in a Java source file (except
comments and white spaces) followed by one or more
classes.

� Package name is “myPackage” and classes are
considred as part of this package; The code is saved in
a file called “ClassA.java” and located in a directory
called “myPackage”.

package myPackage;
public class ClassA {

/ / class body
}
class ClassB {
/ / class body

}

8

Creating Sub Packages

� Classes in one ore more source files can be part of the
same packages.

� As packages in Java are organised
hierarchically, sub-packages can be created as
follows:

� package myPackage.Math
� package myPackage.secondPakage.thirdPackage

� Store “thirdPackage” in a subdirectory named
“myPackage\secondPackage”. Store “secondPackage”
and “Math” class in a subdirectory “myPackage”.

9

Accessing a Package

� As indicated earlier, classes in packages can be
accessed using a fully qualified name or using a
short-cut as long as we import a corresponding
package.

� The general form of importing package is:
� import package1[.package2][…].classname
� Example:

� import myPackage.ClassA;
� import myPackage.secondPackage

� All classes/packages from higher-level package can
be imported as follows:

� import myPackage.* ;

10

Using a Package

� Let us store the code listing below in a file named
“ClassA.java” within subdirectory named “myPackage”
within the current directory (say “abc”).

package myPackage;
public class ClassA {
/ / class body
public void display()
{

System.out.println("Hello, I am ClassA");
}

}
class ClassB {
/ / class body

}

11

Using a Package

	 Within the current directory (“abc”) store
the following code in a file named
“ClassX.java”

import myPackage.ClassA;

public class ClassX
{

public static void main(String args[])
{

ClassA objA = new ClassA();
objA.display();

}
}

12

Compiling and Running

� When ClassX.java is compiled, the compiler
compiles it and places .class file in current
directly. I f .class of ClassA in subdirectory
“myPackage” is not found, it comples ClassA
also.

� Note: I t does not include code of ClassA into
ClassX

� When the program ClassX is run, java loader
looks for ClassA.class file in a package called
“myPackage” and loads it.

13

Using a Package

� Let us store the code listing below in a file named
“ClassA.java” within subdirectory named
“secondPackage” within the current directory (say
“abc”).

package secondPackage;
public class ClassC {
/ / class body

public void display()
{

System.out.println("Hello, I am ClassC");
}

}

14

Using a Package

	 Within the current directory (“abc”) store
the following code in a file named
“ClassX.java”

import myPackage.ClassA;
import secondPackage.ClassC;
public class ClassY
{

public static void main(String args[])
{

ClassA objA = new ClassA();
ClassC objC = new ClassC();
objA.display();
objC.display();

}
}

15

Output

[raj@mundroo] package % java ClassY

Hello, I am ClassA

Hello, I am ClassC

[raj@mundroo] package %

16

Protection and Packages

� All classes (or interfaces) accessible to all
others in the same package.

� Class declared public in one package is
accessible within another. Non-public class is
not

� Members of a class are accessible from a
difference class, as long as they are not private

� protected members of a class in a package are
accessible to subclasses in a different class

17

Visibility - Revisited

� Public keyword applied to a class, makes it
available/visible everywhere. Applied to a
method or variable, completely visible.

� Private fields or methods for a class only visible
within that class. Private members are not
visible within subclasses, and are not inherited.

� Protected members of a class are visible within
the class, subclasses and also within all classes
that are in the same package as that class.

18

Visibility Modifiers

Accessible to: public protected Package
(default)

private

Same Class Yes Yes Yes Yes

Class in package Yes Yes Yes No

Subclass in
different package

Yes Yes No No

Non-subclass
different package

Yes No No No

19

Adding a Class to a Package

� Consider an existing package that contains a
class called “Teacher”:

� This class is stored in “Teacher.java” file within
a directory called “pack1”.

� How do we a new public class called “Student”
to this package.

package pack1;
public class Teacher
{

/ / class body
}

20

Adding a Class to a Package

� Define the public class “Student” and place the package
statement before the class definition as follows:

� Store this in “Student.java” file under the directory
“pack1”.

� When the “Student.java” file is compiled, the class file
will be created and stored in the directory “pack1”.
Now, the package “pack1” will contain both the classes
“Teacher” and “Student”.

package pack1;
public class Student
{

/ / class body
}

class Teacher

package pack1;

class Student

21

Packages and Name Clashing

� When packages are developed by different
organizations, it is possible that multiple packages will
have classes with the same name, leading to name
classing.

� We can import and use these packages like:

 import pack1.* ;

 import pack2.* ;

 Student student1; / / Generates compilation error

class Teacher

package pack1;

class Student

class Student

package pack2;

class Courses

22

Handling Name Clashing

� In Java, name classing is resolved by accessing
classes with the same name in multiple
packages by their fully qualified name.

� Example:
import pack1.* ;
import pack2.* ;
pack1.Student student1;
pack2.Student student2;
Teacher teacher1;
Courses course1;

23

Extending a Class from Package

	 A new class called “Professor” can be
created by extending the “Teacher” class
defined the package “pack1” as follows:

import pack1.Teacher;
public class Professor extends Teacher
{

/ / body of Professor class
/ / I t is able to inherit public and protected members,
/ / but not private or default members of Teacher class.

}

24

Summary

	 Packages allow grouping of related
classes into a single united.

	 Packages are organised in hierarchical
structure.

	 Packages handle name classing issues.
	 Packages can be accessed or inherited

without actual copy of code to each
program.

