
1

Streams and Input/Output Files
Part 3

2

Handling Primitive Data Types

� The basic input and output streams provide
read/write methods that can be used for
reading/writing bytes or characters.

� To read/write the primitive data types such as
integers and doubles, we can use filter classes
as wrappers on the existing I /O streams to
filter data to the original stream.

� The two filter classes supported for creating
“data streams” for primitive data types are:

� DataInputStream
� DataOutputStream

3

Hierarchy of Data Stream Classes

FilterInputStream DataInput

DataInputStream

Class Interface

FilterOutputStream DataOutput

DataOutputtStream

Class Interface

4

Data Input Stream Creation

� Create Input File Stream:
� FileInputStream fis = new FileInputStream(“InFile”);

� Create Input Data Stream:
� DataInputStream dis = new DataInputStream(fis);

� The above statements wrap data input stream (dis) on
file input stream (fis) and use it as a “filter”.

� Methods Supported:
� readBoolean(), readByte(), readChar(), readShort(), readInt(),

readLong(), readFloat(), readDouble()
� They read data stored in file in binary format.

5

Data Output Stream Creation

� Create Output File Stream:
� FileOutputStream fos = new FileOutputStream(“OutFile”);

� Create Output Data Stream:
� DataOutputStream dos = new DataOutputStream(fos);

� The above statements wrap data output stream (dos)
on file output stream (fos) and use it as a “filter”.

� Methods Supported:
� writeBoolean(), writeByte(), writeChar(), writeShort(),

writeInt(), writeLong(), writeFloat(), writeDouble()
� They write data to file in binary format.

� How many bytes are written to file when for statements:
� writeInt(120), writeInt(10120)

6

Data Streams Flow via Filter

� Write primitive data to the file using a filter.

� Read primitive data from the file using a filter.

Program

dos fos

mydatafilter binary stream

Program

fis dis

mydata binary stream filter Screen

7

Writing and Reading Primitive Data

import java.io.* ;
public class ReadWriteFilter {

public static void main(String args[]) throws I OException {
/ / write primitive data in binary format to the "mydata" file
FileOutputStream fos = new FileOutputStream("mydata") ;
DataOutputStream dos = new DataOutputStream(fos) ;
dos.writeI nt(120) ;
dos.writeDouble(375.50) ;
dos.writeI nt(’A’+ 1) ;
dos.writeBoolean(true) ;
dos.writeChar(’X’) ;
dos.close() ;
fos.close() ;

/ / read primitive data in binary format from the "mydata" file
FileI nputStream fis = new FileI nputStream("mydata") ;
DataI nputStream dis = new DataI nputStream(fis) ;
System.out.println(dis.readI nt()) ;
System.out.println(dis.readDouble()) ;
System.out.println(dis.readI nt()) ;
System.out.println(dis.readBoolean()) ;
System.out.println(dis.readChar()) ;
dis.close() ;
fis.close() ;

}
}

8

Program Run and Output

� C:\254\examples> java ReadWriteFilter
� 120
� 375.5
� 66
� true
� X

� Display content of “mydata” file (in binary format):
� C:\254\examples> type mydata

� x@wx B X
� What is the size of “mydata” file (in bytes) ?

� Size of int+ double+ int+ boolean+ char

9

Concatenating and Buffering Streams

� Two or more input streams can be combined
into a single input stream. This process is
known as logical concatenation of streams and
is achieved using the SequenceInputStream
class.

� A SequenceInputStream starts out with an
ordered collection of input streams and reads
from the first one until end of file is reached,
whereupon it reads from the second one, and
so on, until end of file is reached on the last of
the contained input streams.

10

Sequencing and Buffering of Streams

� Buffered streams sit between the program and
data source/destination and functions like a
filter or support efficient I /O. Buffered can be
created using BufferedInputStream and
BufferedOutputStream classes.

Programfile1+ file2 Buffer
file1.dat

Streams
Sequencer

Screen

file2.dat

read()

Buffer

write()
inBuffer

outputBuffer

11

Example Program

import java.io.* ;
public class CombineStreams {

public static void main(String args[]) throws I OException {
/ / declare file streams
FileI nputStream file1 = new FileI nputStream("file1.dat") ;
FileI nputStream file2 = new FileI nputStream("file2.dat") ;
/ / declare file3 to store combined streams
SequenceI nputStream file3 = null;
/ / concatenate file1 and file2 streams into file3
file3 = new SequenceI nputStream(file1, file2) ;
BufferedI nputStream inBuffer = new BufferedI nputStream(file3) ;
BufferedOutputStream outBuffer = new BufferedOutputStream(System.out) ;
/ / read and write combined streams until the end of buffers
int ch;
while((ch = inBuffer.read()) != -1)

outBuffer.write(ch) ;
outBuffer.flush() ; / / check out the output by removing this line
System.out.println("\ nHello, This output is generated by CombineFiles.java program");
inBuffer.close() ;
outBuffer.close() ;
file1.close() ;
file2.close() ;
file3.close() ;

}
}

12

Contents of Input Files

� The file1.dat contains:
� Hello,
� I am C++ , born in AT&T.

� The file2.dat contains:
� Hello,
� I am Java, born in Sun Microsystems!

13

Output

� C:\254\examples> java CombineStreams
� Hello,
� I am C+ + , born in AT&T.
� Hello,
� I am Java, born in Sun Microsystems!
� Hello, This output is generated by CombineFiles.java program

� I f the statement outBuffer.flush() is removed, the
output will be:

� Hello, This output is generated by CombineFiles.java program
� Hello,
� I am C+ + , born in AT&T.
� Hello,
� I am Java, born in Sun Microsystems!

14

Random Access Files

� So for we have discussed sequential files that are either
used for storing data and accessed (read/write) them in
sequence.

� In most real world applications, it is necessary to
access data in non-sequential order (e.g, banking
system) and append new data or update existing data.

� Java IO package supports RandomAccessFile class that
allow us to create files that can be used for reading
and/or writing with random access.

� The file can be open either in read mode (“r”) or read-
write mode (“rw”) as follows:

� myFileHandleName = new RandomAccessFile (“filename”,
“mode”);

� The file pointer can be set to any to any location
(measured in bytes) using seek() method prior to
reading or writing.

15

Random Access Example

import java.io.* ;
public class RandomAccess {

public static void main(String args[]) throws I OException {
/ / write primitive data in binary format to the "mydata" file
RandomAccessFile myfile = new RandomAccessFile("rand.dat", "rw") ;
myfile.writeI nt(120) ;
myfile.writeDouble(375.50) ;
myfile.writeI nt(’A’+ 1) ;
myfile.writeBoolean(true) ;
myfile.writeChar(’X’) ;
/ / set pointer to the beginning of file and read next two items
myfile.seek(0) ;
System.out.println(myfile.readI nt()) ;
System.out.println(myfile.readDouble()) ;

/ / set pointer to the 4th item and read it
myfile.seek(16) ;
System.out.println(myfile.readBoolean()) ;
/ / Go to the end and “append” an integer 2003
myfile.seek(myfile.length()) ;
myfile.writeI nt(2003) ;
/ / read 5th and 6th items
myfile.seek(17) ;
System.out.println(myfile.readChar()) ;
System.out.println(myfile.readI nt()) ;
System.out.println("File length: "+ myfile.length()) ;
myfile.close() ;

}
}

Int

Double

Int

boolean
Char

Int

0

4

12

16
17

19

23

16

Execution and Output

� C:\254\examples> java RandomAccess
� 120
� 375.5
� true
� X
� 2003
� File length: 23

17

Streams and Interactive I /O

� Real world applications are designed to support
interactive and/or batch I /O operations.

� Interactive programs allow users to interact
with them during their execution through I /O
devices such as keyboard, mouse, display
devices (text/graphical interface), media
devices (microphones/speakers), etc..

	 Java provides rich functionality for developing
interactive programs.

� Batch programs are those that are designed to
read input data from files and produce outputs
through files.

18

Standard I /O

� The System class contains three I /O
objects (static)

� System.in – instance of InputStream
� System.out – instance of PrintStream
� System.err – instance of PrintStream

� To perform keyboard input, we need use
functionalities of DataInputStream and
StringTokenizer classes.

19

Reading Integer from Standard Input

� Create buffered reader for standard input by
wrapping System.in object:

	 BufferedReader dis = new BufferedReader(new
InputStreamReader(System.in));

� Read a line of text from the console
	 String str = dis.readLine();

� Create Tokenens
	 StringTokenizer st;
	 st = new StringTokenizer(str);

� Convert String Token into basic integer:
	 int stdID = Integer.parseInt(st.nextToken());

20

Interactive IO Example

import java.io.* ;
import java.util.* ;
public class StudentRecord {

public static void main(String args[]) throws I OException {
/ / Create buffered reader for standard input
BufferedReader dis = new BufferedReader(new I nputStreamReader(System.in)) ;
StringTokenizer st;
/ / reading data from console
System.out.print("Enter Student I D: ") ;
st = new StringTokenizer(dis.readLine()) ;
int stdI D = I nteger.parseI nt(st.nextToken()) ;
System.out.print("Enter Student Name: ") ;
String stdName = dis.readLine() ;
System.out.print("Enter Student Marks: ") ;
st = new StringTokenizer(dis.readLine()) ;
int stdMarks = I nteger.parseI nt(st.nextToken()) ;
/ / write to console
System.out.println("Student details are:") ;
System.out.println("I D: "+ stdI D);
System.out.println("Name: "+ stdName);
System.out.println("Marks: "+ stdMarks);

}
}

21

Run and Output

� C:\254\examples> java StudentRecord
� Enter Student ID: 2002010
� Enter Student Name: Mary Baker
� Enter Student Marks: 85
� Student details are:
� ID: 2002010
� Name: Mary Baker
� Marks: 85

22

Summary

� All Java I /O classes are designed to operate with
Exceptions.

� User Exceptions and your own handler with files to
manger runtime errors.

� Subclasses FileReader / FileWriter support characters-
based File I /O.

� FileInputStream and FileOutputStream classes support
bytes-based File I /O.

� Buffered read/write operations support efficient I /O.
� DataInputStream and DataOutputStream classes

support rich I /O functionality.
� RandomAccessFile supports access to any data items in

files in any order.

