
1

Streams and Input/Output Files
Part 2

2

Files and Exceptions

� When creating files and performing I /O
operations on them, the systems generates
errors. The basic I /O related exception classes
are given below:

� EOFException – signals that end of the file is
reached unexpectedly during input.

� FileNotFoundException – file could not be opened
� InterruptedIOException – I/O operations have been

interrupted
� IOException – signals that I /O exception of some

sort has occurred – very general I /O exception.

3

Syntax

� Each I /O statement or a group of I /O
statements must have an exception handler
around it/ them as follows:
try {
…// I /O statements – open file, read, etc.
}
catch(IOException e) / / or specific type exception
{

…//message output statements

}

4

Example

import java.io.*;
class CountBytesNew {

public static void main (String[] args)
throws FileNotFoundException, IOException / / throws is optional in this case

{

FileInputStream in;
try{

in = new FileInputStream("FileIn.txt");
int total = 0;
while (in.read() != -1)

total++;
System.out.println("Total = " + total);

}
catch(FileNotFoundException e1)
{

System.out.println("FileIn.txt does not exist!");
}
catch(IOException e2)
{

System.out.println("Error occured while read file FileIn.txt");
}

}

}

5

Creation of Files

� There are 2 ways of initialising file stream objects:
� Passing file name directly to the stream constructor

� Similar to previous example
� Passing File Object:

� Create File Object
� File inFile = new File("FileIn.txt");

� Pass file object while creating stream:
� try {

� in = new FileInputStream(inFile);
� }

� Manipulation operations are same once the
file is opened.

6

Reading and Writing Characters

� As pointed out earlier, subclasses of Reader
and Writer implement streams that can handle
characters.

� The two subclasses used for handling
characters in file are:

� FileReader
� FileWriter

� While opening a file, we can pass either file
name or File object during the creation of
objects of the above classes.

7

Reader Class Hierarchy

Reader
StringReader

CharacterArrayReader

PipedReader

BufferedReader

FileInputStream
InputStreamReader

FileterReader

FileReader PushbackReader

8

Reader - operations

Closes streampublic void close()

Returns true if the stream is
ready to be read.

public boolean()

Skips count characters.public long skip(long count)

Same as previous offset= 0
and length= buf.length()

public int read(char[] buf)

Reads and stores the
characters in buf starting at
offset. count is the
maximum read.

public int read(char[] buf,
int offset, int count)

Reads a character and
returns as a integer 0-255

public int read()

9

Reader - example
� Count total number of spaces in the file

import java.io.* ;
public class CountSpace {

public static void main (String[] args)
throws IOException

{
Reader in; / / in can also be FileReader
in = new FileReader("FileIn.txt");
int ch, total, spaces;

spaces = 0;

for (total = 0 ; (ch = in.read()) != -1; total+ +){
if(Character.isWhitespace((char) ch))
{

spaces+ + ;
}

}
System.out.println(total + " chars " + spaces + " spaces ");

}
}

10

Writer Class Hierarchy

Reader
BufferedWriter

CharacterArrayWriter

FilterWriter

PrinterWriter

PipedWriter
OutputStreamWriter

StringWriter

FileWriter

11

Byte Output Streams - operations

Same as previous offset= 0
and count = buf.length()

public void write(char[]
buf)

Closes streampublic void close()

Flushes the stream.public void flush()

Write count characters
starting at offset of str.

public void write(String str,
int offset, int count)

Write count characters
starting from offset in buf.

public void write(char[] buf,
int offset, int count)

Write ch as characters.public abstract void
write(int ch)

12

Copying Characters from Files

� Write a Program that copies contents of a
source file to a destination file.

� The names of source and destination files
is passed as command line arguments.

� Make sure that sufficient number of
arguments are passed.

� Print appropriate error messages.

13

FileCopy.java

import java.io.* ;
public class FileCopy {

public static void main (String[] args)
{

if(args.length != 2)
{

System.out.println("Error: in sufficient arguments");
System.out.println("Usage - java FileCopy SourceFile DestFile");
System.exit(-1);

}
try {
FileReader srcFile = new FileReader(args[0]);
FileWriter destFile = new FileWriter(args[1]);

int ch;
while((ch= srcFile.read()) != -1)

destFile.write(ch);
srcFile.close();
destFile.close();
}
catch(IOException e)
{

System.out.println(e);
System.exit(-1);

}
}

}

14

Runs and Outputs

� Source file exists:
� java FileCopy FileIn.txt Fileout.txt

� Source file does not exist:
� java FileCopy abc Fileout.txt

java.io.FileNotFoundException: abc (No such file or
directory)

� In sufficient arguments passed
� java FileCopy FileIn.txt

Error: in sufficient arguments
Usage - java FileCopy SourceFile DestFile

15

Buffered Streams

� Buffered stream classes –
BufferedInputStream, BufferedOutputStream,
BufferedReader, BufferedWriter buffer data to
avoid every read or write going to the stream.

� These are used in file operations since
accessing the disk for every character read is
not efficient.

16

Buffered Streams

� Buffered character streams understand
lines of text.

� BufferedWriter has a newLine method
which writes a new line character to the
stream.

� BufferedReader has a readLine method to
read a line of text as a String.

� For complete listing of methods, please
see Java documentation.

17

BufferedReader - example
� Use a BufferedReader to read a file one line at a time

and print the lines to standard output

import java.io.* ;

class ReadTextFile {
public static void main(String[] args)

throws FileNotFoundException, IOException
{

BufferedReader in;
in = new BufferedReader(new FileReader(“Command.txt”));
String line;
while ((line = in.readLine()) != null)
{

System.out.println(line);
}

}
}

18

Reading/Writing Bytes

� The FileReader and FileWriter classes are
used to read and write 16-bit characters.

� As most file systems use only 8-bit bytes,
Java supports number of classes that can
handle bytes. The two most commonly
used classes for handling bytes are:

� FileInputStream (discussed earlier)
� FileOutputStream

19

Writing Bytes - Example

public class WriteBytes {

public static void main (String[] args)
{

byte cities[] = { ’M’, ’e’, ’l’, ’b’, ’o’, ’u’, ’r’, ’n’, ’e’, ’\n’, ’S’, ’y’,’d’, ’n’, ’e’, ’y’, ’\n‘ } ;

FileOutputStream outFile;
try{

outFile = new FileOutputStream("City.txt");
outFile.write(cities);
outFile.close();

}
catch(IOException e)
{

System.out.println(e);
System.exit(-1);

}

}

}

20

Summary

� All Java I /O classes are designed to operate
with Exceptions.

� User Exceptions and your own handler with
files to manger runtime errors.

� Subclasses FileReader / FileWriter support
characters-based File I /O.

� FileInputStream and FileOutputStream classes
support bytes-based File I /O.

� Buffered read operations support efficient I /O.

