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Streams and Input/Output Files
Part I
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Introduction

� So far we have used variables and arrays for storing 
data inside the programs. This approach poses the 
following limitations:

� The data is lost when variable goes out of scope or when the 
program terminates. That is data is stored in temporary/mail 
memory is released when program terminates.

� I t is difficult to handle large volumes of data.
� We can overcome this problem by storing data on 

secondary storage devices such as floppy or hard disks. 
� The data is stored in these devices using the concept of 

Files and such data is often called persistent data.
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File Processing

� Storing and manipulating data using files is 
known as file processing.

� Reading/Writing of data in a file can be 
performed at the level of bytes, characters, or 
fields depending on application requirements.

� Java also provides capabilities to read and write 
class objects directly. The process of reading 
and writing objects is called object serialisation.
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C Input/Output Revision

FILE*  fp;

fp =  fopen(“In.file”, “rw”);
fscanf(fp, ……);
frpintf(fp, …..);
fread(………, fp);
fwrite(……….., fp); 
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I /O and Data Movement

� The flow of data into a program 
(input) may come from different 
devices such as keyboard, 
mouse, memory, disk, network, 
or another program.

� The flow of data out of a 
program (output) may go to the 
screen, printer, memory, disk, 
network, another program.

� Both input and output share a 
certain common property such as 
unidirectional movement of data 
– a sequence of bytes and 
characters and support to the 
sequential access to the data.
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Streams

� Java Uses the concept of 
Streams to represent the 
ordered sequence of data, a 
common characteristic shared 
by all I /O devices. 

� Streams presents a uniform, 
easy to use, object oriented 
interface between the 
program and I /O devices.

� A stream in Java is a path 
along which data flows (like a 
river or pipe along which 
water flows).
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Stream Types

� The concepts of sending 
data from one stream to 
another (like a pipe 
feeding into another 
pipe) has made streams 
powerful tool for file 
processing. 

� Connecting streams can 
also act as filters.

� Streams are classified 
into two basic types:

� Input Steam
� Output Stream

Source Program

Input Stream
reads

SourceProgram

Output Stream

writes
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Java Stream Classes

� Input/Output related classes are defined in 
java.io package.

� Input/Output in Java is defined in terms of 
streams.

� A stream is a sequence of data, of no 
particular length. 

� Java classes can be categorised into two 
groups based on the data type one which 
they operate:

� Byte streams
� Character Streams
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Streams

Readers/ WritersInput 
streams/Output 
streams

Operates on 16-bit 
(2 byte) unicode
characters.

Operated on 8 bit (1 
byte) data.

Character streamsByte Streams
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Classification of Java Stream Classes

Byte Stream
classes

Character Stream
classes
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Byte Input Streams

InputStream
ObjectInputStream

SequenceInputStream

ByteArrayInputStream

PipedInputStream

FileInputStream
FilterInputStream

PushbackInputStream

DataInputStream BufferedInputStream
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Byte Input Streams - operations

Closes streampublic void close()

Returns the number of bytes 
that can be read.

public int available()

Skips count bytes.public long skip(long count)

Same as previous offset= 0 
and length= buf.length()

public int read(byte[ ]  buf)

Reads and stores the bytes 
in buf starting at offset. 
Count is the maximum read.

public int read(byte[ ]  buf, 
int offset, int count)

Reads a byte and returns as 
a integer 0-255

public abstract int read()
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Byte Input Stream - example

� Count total number of bytes in the file

import java.io.* ; 

class CountBytes {
public static void main(String[ ]  args)

throws FileNotFoundException, IOException
{

FileInputStream in;
in  =   new FileInputStream(“InFile.txt”);

int total =  0;
while (in.read() !=  -1)

total++ ;
System.out.println(total +  “ bytes”);

}
}
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Byte Output Streams

OutputStream
ObjectOutputStream

SequenceOutputStream

ByteArrayOutputStream

PipedOutputStream

FileOutputStream
FilterOutputStream

PrintStream

DataOutputStream BufferedOutputStream
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Byte Output Streams - operations

Closes streampublic void close()

Flushes the stream.public void flush()

Same as previous offset= 0
and count =  buf.length()

public void write(byte[ ]  
buf)

Write count bytes starting 
from offset in buf.

public void write(byte[ ]  buf, 
int offset, int count)

Write b as  bytes.public abstract void 
write(int b)
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Byte Output Stream - example

� Read from standard in and write to standard out

import java.io.* ;

class ReadWrite {
public static void main(string[ ]  args)

throws IOException
{

int b;
while (( b =  System.in.read()) !=  -1)
{

System.out.write(b);
}

}
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Summary

� Streams provide uniform interface for 
managing I /O operations in Java 
irrespective of device types.

� Java supports classes for handling Input 
Steams and Output steams via java.io
package.

� Exceptions supports handling of errors 
and their propagation during file 
operations.


