
1

Streams and Input/Output Files
Part I

2

Introduction

� So far we have used variables and arrays for storing
data inside the programs. This approach poses the
following limitations:

� The data is lost when variable goes out of scope or when the
program terminates. That is data is stored in temporary/mail
memory is released when program terminates.

� I t is difficult to handle large volumes of data.
� We can overcome this problem by storing data on

secondary storage devices such as floppy or hard disks.
� The data is stored in these devices using the concept of

Files and such data is often called persistent data.

3

File Processing

� Storing and manipulating data using files is
known as file processing.

� Reading/Writing of data in a file can be
performed at the level of bytes, characters, or
fields depending on application requirements.

� Java also provides capabilities to read and write
class objects directly. The process of reading
and writing objects is called object serialisation.

4

C Input/Output Revision

FILE* fp;

fp = fopen(“In.file”, “rw”);
fscanf(fp, ……);
frpintf(fp, …..);
fread(………, fp);
fwrite(……….., fp);

5

I /O and Data Movement

� The flow of data into a program
(input) may come from different
devices such as keyboard,
mouse, memory, disk, network,
or another program.

� The flow of data out of a
program (output) may go to the
screen, printer, memory, disk,
network, another program.

� Both input and output share a
certain common property such as
unidirectional movement of data
– a sequence of bytes and
characters and support to the
sequential access to the data.

6

Streams

� Java Uses the concept of
Streams to represent the
ordered sequence of data, a
common characteristic shared
by all I /O devices.

� Streams presents a uniform,
easy to use, object oriented
interface between the
program and I /O devices.

� A stream in Java is a path
along which data flows (like a
river or pipe along which
water flows).

7

Stream Types

� The concepts of sending
data from one stream to
another (like a pipe
feeding into another
pipe) has made streams
powerful tool for file
processing.

� Connecting streams can
also act as filters.

� Streams are classified
into two basic types:

� Input Steam
� Output Stream

Source Program

Input Stream
reads

SourceProgram

Output Stream

writes

8

Java Stream Classes

� Input/Output related classes are defined in
java.io package.

� Input/Output in Java is defined in terms of
streams.

� A stream is a sequence of data, of no
particular length.

� Java classes can be categorised into two
groups based on the data type one which
they operate:

� Byte streams
� Character Streams

9

Streams

Readers/ WritersInput
streams/Output
streams

Operates on 16-bit
(2 byte) unicode
characters.

Operated on 8 bit (1
byte) data.

Character streamsByte Streams

10

Classification of Java Stream Classes

Byte Stream
classes

Character Stream
classes

11

Byte Input Streams

InputStream
ObjectInputStream

SequenceInputStream

ByteArrayInputStream

PipedInputStream

FileInputStream
FilterInputStream

PushbackInputStream

DataInputStream BufferedInputStream

12

Byte Input Streams - operations

Closes streampublic void close()

Returns the number of bytes
that can be read.

public int available()

Skips count bytes.public long skip(long count)

Same as previous offset= 0
and length= buf.length()

public int read(byte[] buf)

Reads and stores the bytes
in buf starting at offset.
Count is the maximum read.

public int read(byte[] buf,
int offset, int count)

Reads a byte and returns as
a integer 0-255

public abstract int read()

13

Byte Input Stream - example

� Count total number of bytes in the file

import java.io.* ;

class CountBytes {
public static void main(String[] args)

throws FileNotFoundException, IOException
{

FileInputStream in;
in = new FileInputStream(“InFile.txt”);

int total = 0;
while (in.read() != -1)

total++ ;
System.out.println(total + “ bytes”);

}
}

14

Byte Output Streams

OutputStream
ObjectOutputStream

SequenceOutputStream

ByteArrayOutputStream

PipedOutputStream

FileOutputStream
FilterOutputStream

PrintStream

DataOutputStream BufferedOutputStream

15

Byte Output Streams - operations

Closes streampublic void close()

Flushes the stream.public void flush()

Same as previous offset= 0
and count = buf.length()

public void write(byte[]
buf)

Write count bytes starting
from offset in buf.

public void write(byte[] buf,
int offset, int count)

Write b as bytes.public abstract void
write(int b)

16

Byte Output Stream - example

� Read from standard in and write to standard out

import java.io.* ;

class ReadWrite {
public static void main(string[] args)

throws IOException
{

int b;
while ((b = System.in.read()) != -1)
{

System.out.write(b);
}

}

17

Summary

� Streams provide uniform interface for
managing I /O operations in Java
irrespective of device types.

� Java supports classes for handling Input
Steams and Output steams via java.io
package.

� Exceptions supports handling of errors
and their propagation during file
operations.

