
1

Final and Abstract Classes

2

Restricting Inheritance

Parent

Child

Inherited
capability

3

Final Members: A way for Preventing
Overriding of Members in Subclasses

� All methods and variables can be overridden by
default in subclasses.

� This can be prevented by declaring them as
final using the keyword “final” as a modifier.
For example:

� final int marks = 100;
� final void display();

� This ensures that functionality defined in this
method cannot be altered any. Similarly, the
value of a final variable cannot be altered.

4

Final Classes: A way for Preventing
Classes being extended

� We can prevent an inheritance of classes by other
classes by declaring them as final classes.

� This is achieved in Java by using the keyword final as
follows:
final class Marks
{ / / members
}
final class Student extends Person
{ / / members
}

� Any attempt to inherit these classes will cause an error.

5

Abstract Classes
� When we define a class to be “final”, it cannot

be extended. In certain situation, we want to
properties of classes to be always extended and
used. Such classes are called Abstract Classes.

� An Abstract class is a conceptual class.
� An Abstract class cannot be instantiated –

objects cannot be created.

� Abstract classes provides a common root for a
group of classes, nicely tied together in a
package:

6

Abstract Class Syntax

abstract class ClassName
{

...
…
abstract Type MethodName1();
…
…
Type Method2()
{

/ / method body
}

}
� When a class contains one or more abstract methods, it should be

declared as abstract class.
� The abstract methods of an abstract class must be defined in its

subclass.
� We cannot declare abstract constructors or abstract static

methods.

7

Abstract Class -Example

� Shape is a abstract class.

Shape

Circle Rectangle

8

The Shape Abstract Class

� Is the following statement valid?
� Shape s = new Shape();

� No. I t is illegal because the Shape class is an abstract
class, which cannot be instantiated to create its objects.

public abstract class Shape {
public abstract double area();
public void move() { // non-abstract method

// implementation
}

}

9

Abstract Classes

public Circle extends Shape {
protected double r;
protected static final double PI =3.1415926535;
public Circle() { r = 1.0;)
public double area() { return PI * r * r; }

…
}
public Rectangle extends Shape {

protected double w, h;
public Rectangle() { w = 0.0; h=0.0; }
public double area() { return w * h; }

}

10

Abstract Classes Properties

� A class with one or more abstract methods is
automatically abstract and it cannot be
instantiated.

� A class declared abstract, even with no abstract
methods can not be instantiated.

� A subclass of an abstract class can be
instantiated if it overrides all abstract methods
by implementation them.

� A subclass that does not implement all of the
superclass abstract methods is itself abstract;
and it cannot be instantiated.

11

Summary

� I f you do not want (properties of) your class to be
extended or inherited by other classes, define it as a
final class.

� Java supports this is through the keyword “final”.
� This is applied to classes.

� You can also apply the final to only methods if you do
not want anyone to override them.

� I f you want your class (properties/methods) to be
extended by all those who want to use, then define it
as an abstract class or define one or more of its
methods as abstract methods.

� Java supports this is through the keyword “abstract”.
� This is applied to methods only.
� Subclasses should implement abstract methods; otherwise,

they cannot be instantiated.

12

Interfaces

Design Abstraction and a way for
loosing realizing Multiple

Inheritance

13

Interfaces

� Interface is a conceptual entity similar to a
Abstract class.

� Can contain only constants (final variables) and
abstract method (no implementation) -
Different from Abstract classes.

� Use when a number of classes share a
common interface.

� Each class should implement the interface.

14

Interfaces: An informal way of
realising multiple inheritance

� An interface is basically a kind of class—it
contains methods and variables, but they have
to be only abstract classes and final
fields/variables.

� Therefore, it is the responsibility of the class
that implements an interface to supply the code
for methods.

� A class can implement any number of
interfaces, but cannot extend more than one
class at a time.

� Therefore, interfaces are considered as an
informal way of realising multiple inheritance in
Java.

15

Interface - Example

speak()

Politician Priest

<<Interface>>
Speaker

speak() speak()

Lecturer

speak()

16

Interfaces Definition

� Syntax (appears like abstract class):

� Example:

interface InterfaceName {
// Constant/Final Variable Declaration
// Methods Declaration – only method body

}

interface Speaker {
public void speak();

}

17

Implementing Interfaces

� Interfaces are used like super-classes
who properties are inherited by classes.
This is achieved by creating a class that
implements the given interface as
follows:

class ClassName implements InterfaceName [, InterfaceName2, …]
{

// Body of Class
}

18

Implementing Interfaces Example
class Politician implements Speaker {

public void speak(){
System.out.println(“Talk politics”);

}
}

class Priest implements Speaker {
public void speak(){

System.out.println(“Religious Talks”);
}

}

class Lecturer implements Speaker {
public void speak(){

System.out.println(“Talks Object Oriented Design and Programming!”);
}

}

19

Extending Interfaces

� Like classes, interfaces can also be extended.
The new sub-interface will inherit all the
members of the superinterface in the manner
similar to classes. This is achieved by using the
keyword extends as follows:

interface InterfaceName2 extends InterfaceName1

{
// Body of InterfaceName2

}

20

Inheritance and Interface
Implementation

� A general form of interface implementation:

� This shows a class can extended another class while
implementing one or more interfaces. I t appears like a
multiple inheritance (if we consider interfaces as special
kind of classes with certain restrictions or special
features).

class ClassName extends SuperClass implements InterfaceName [,
InterfaceName2, …]
{

// Body of Class
}

21

Student Assessment Example

� Consider a university where students who participate in
the national games or Olympics are given some grace
marks. Therefore, the final marks awarded =
Exam_Marks + Sports_Grace_Marks. A class diagram
representing this scenario is as follow:

Student Sports

Exam

Results

extends

extends
implements

22

Software Implementation

class Student
{

/ / student no and access methods
}
interface Sport
{

/ / sports grace marks (say 5 marks) and abstract methods
}
class Exam extends Student
{

/ / example marks (test1 and test 2 marks) and access methods
}
class Results extends Exam implements Sport
{

/ / implementation of abstract methods of Sport interface
// other methods to compute total marks = test1+ test2+sports_grace_marks;
/ / other display or final results access methods

}

23

Interfaces and Software Engineering

� Interfaces, like abstract classes and methods, provide
templates of behaviour that other classes are expected
to implement.

� Separates out a design hierarchy from implementation
hierarchy. This allows software designers to
enforce/pass common/standard syntax for
programmers implementing different classes.

� Pass method descriptions, not implementation
� Java allows for inheritance from only a single

superclass. Interfaces allow for class mixing.
� Classes implement interfaces.

24

A Summary of OOP and Java
Concepts Learned So Far

25

Summary

� Class is a collection of data and methods that
operate on that data

� An object is a particular instance of a class
� Object members accessed with the ‘dot’

(Class.v)
� Instance variables occur in each instance of a

class
� Class variables associated with a class
� Objects created with the new keyword

26

Summary

� Objects are not explicitly ‘freed’ or destroyed.
Java automatically reclaims unused objects.

� Java provides a default constructor if none
defined.

� A class may inherit the non-private methods
and variables of another class by subclassing,
declaring that class in its extends clause.

� java.lang.Object is the default superclass for a
class. I t is the root of the Java hierarchy.

27

Summary

� Method overloading is the practice of defining
multiple methods which have the same name,
but different argument lists

� Method overriding occurs when a class
redefines a method inherited from its
superclass

� static, private, and final methods cannot be
overridden

� From a subclass, you can explicitly invoke an
overridden method of the superclass with the
super keyword.

28

Summary

� Data and methods may be hidden or
encapsulated within a class by specifying the
private or protected visibility modifiers.

� An abstract method has no method body. An
abstract class contains abstract methods.

� An interface is a collection of abstract methods
and constants. A class implements an interface
by declaring it in its implements clause, and
providing a method body for each abstract
method.

