Final and Abstract Classes

Restricting Inheritance

Inherited
capability

Final Members: A way for Preventing
Overriding of Members in Subclasses

All methods and variables can be overridden by
default in subclasses.

This can be prevented by declaring them as
final using the keyword “final” as a modifier.
For example:

= final int marks = 100;

= final void display();

This ensures that functionality defined in this
method cannot be altered any. Similarly, the
value of a final variable cannot be altered.

Final Classes: A way for Preventing
Classes being extended

We can prevent an inheritance of classes by other
classes by declaring them as final classes.

This is achieved in Java by using the keyword final as
follows:

final class Marks

{ /I members

}

final class Student extends Person

{ /I members

}
Any attempt to inherit these classes will cause an error.

Abstract Classes

When we define a class to be “final”, it cannot
be extended. In certain situation, we want to
properties of classes to be always extended and
used. Such classes are called Abstract Classes.

An Abstract class is a conceptual class.

An Abstract class cannot be instantiated —
objects cannot be created.

Abstract classes provides a common root for a
group of classes, nicely tied together in a
package:

Abstract Class Syntax

abstract class ClassName

{

abstract Type MethodNamel();

Type Method2()

11 method body
}

When a class contains one or more abstract methods, it should be
declared as abstract class.

The abstract methods of an abstract class must be defined in its
subclass.

We cannot declare abstract constructors or abstract static
methods.

Abstract Class -Example

Shape is a abstract class.

Shape

| : |

Circle Rectangle

The Shape Abstract Class

public abstract class Shape {
public abstract double area();
public void move() { // non-abstract method
/I implementation

}

I's the following statement valid?

= Shape s = new Shape();

No. It is illegal because the Shape class is an abstract
class, which cannot be instantiated to create its objects.

Abstract Classes

public Circle extends Shape {
protected doubler;
protected static final double Pl =3.1415926535;
public Circle() { r=1.0;)
public double area() { return Pl * r * r; }

}
public Rectangle extends Shape {
protected double w, h;
public Rectangle() { w = 0.0; h=0.0; }
public double area() { returnw * h; }

}

Abstract Classes Properties

A class with one or more abstract methods is
automatically abstract and it cannot be
instantiated.

A class declared abstract, even with no abstract
methods can not be instantiated.

A subclass of an abstract class can be
instantiated if it overrides all abstract methods
by implementation them.

A subclass that does not implement all of the
superclass abstract methods is itself abstract;
and it cannot be instantiated.

10

Summary

If you do not want (properties of) your class to be
extended or inherited by other classes, define it as a
final class.

= Java supports this is through the keyword “final”.

= This is applied to classes.

You can also apply the final to only methods if you do
not want anyone to override them.

If you want your class (properties/ methods) to be
extended by all those who want to use, then define it
as an abstract class or define one or more of its
methods as abstract methods.

= Java supports this is through the keyword “abstract”.

= This is applied to methods only.

= Subclasses should implement abstract methods; otherwise,
they cannot be instantiated.

11

Interfaces

Design Abstraction and a way for
loosing realizing Multiple
Inheritance

12

Interfaces

Interface is a conceptual entity similar to a
Abstract class.

Can contain only constants (final variables) and
abstract method (no implementation) -
Different from Abstract classes.

Use when a number of classes share a
common interface.

Each class should implement the interface.

13

Interfaces: An informal way of
realising multiple inheritance

An interface is basically a kind of class—it
contains methods and variables, but they have
to be only abstract classes and final
fields/variables.

Therefore, it is the responsibility of the class
that implements an interface to supply the code
for methods.

A class can implement any number of
interfaces, but cannot extend more than one
class at a time.

Therefore, interfaces are considered as an

informal way of realising multiple inheritance in
Java. 14

Interface - Example

<<Interface>>
Speaker
speak()
Politician Priest Lecturer
speak() speak() speak()

15

Interfaces Definition

Syntax (appears like abstract class):

interface InterfaceName {
/I Constant/Final Variable Declaration
/I Methods Declaration — only method body

}
Example:

interface Speaker {
public void speak();
}

16

Implementing Interfaces

Interfaces are used like super-classes
who properties are inherited by classes.
This is achieved by creating a class that
implements the given interface as
follows:

class ClassName implements InterfaceName [, InterfaceName2, ..]

1/ Body of Class
}

17

Implementing Interfaces Example

class Politician implements Speaker {
public void speak(){
System.out.printin(“Talk politics”);
}

}

class Priest implements Speaker {
public void speak(){
System.out.printin(“Religious Talks”);
}

class Lecturer implements Speaker {
public void speak(){
System.out.printin(“ Talks Object Oriented Design and Programming!”);
}

Extending Interfaces

Like classes, interfaces can also be extended.
The new sub-interface will inherit all the
members of the superinterface in the manner
similar to classes. This is achieved by using the
keyword extends as follows:

interface InterfaceName2 extends interfaceName1

// Body of InterfaceName2

}

19

Inheritance and Interface
Implementation

A general form of interface implementation:

class ClassName extends Super Class implements InterfaceName [,
InterfaceName2, ..]

// Body of Class

}

This shows a class can extended another class while
implementing one or more interfaces. It appears like a
multiple inheritance (if we consider interfaces as special
kind of classes with certain restrictions or special
features).

20

Student Assessment Example

Consider a university where students who participate in
the national games or Olympics are given some grace
marks. Therefore, the final marks awarded =
Exam_Marks + Sports_Grace_Marks. A class diagram
representing this scenario is as follow:

[Suen |
extends
Exam :
implements

extends

21

Software Implementation

class Student
11 student no and access methods
interface Sport
1/ sports grace marks (say 5 marks) and abstract methods
2:Iass Exam extends Student
/1 example marks (test1 and test 2 marks) and access methods
class Results extends Exam implements Sport
/1 implementation of abstract methods of Sport interface
/1 other methods to compute total marks = test1+test2+sports_grace_marks;

11 other display or final results access methods

}

22

Interfaces and Software Engineering

Interfaces, like abstract classes and methods, provide
templates of behaviour that other classes are expected
to implement.

Separates out a design hierarchy from implementation
hierarchy. This allows software designers to
enforce/pass common/standard syntax for
programmers implementing different classes.

Pass method descriptions, not implementation

Java allows for inheritance from only a single
superclass. /nterfaces allow for class mixing.

Classes implement interfaces.

23

A Summary of OOP and Java
Concepts Learned So Far

24

Summary

Classis a collection of data and methods that
operate on that data

An object is a particular instance of a class

Object members accessed with the ‘dot’
(Class.v)

Instance variables occur in each instance of a
class

Class variables associated with a class
Objects created with the new keyword

25

Summary

Objects are not explicitly ‘freed’ or destroyed.
Java automatically reclaims unused objects.
Java provides a default constructor if none
defined.

A class may inherit the non-private methods
and variables of another class by subclassing,
declaring that class in its extends clause.
Jjava.lang. Object is the default superclassfor a
class. It is the root of the Java hierarchy.

26

Summary

Method overloading is the practice of defining
multiple methods which have the same name,
but different argument lists

Method overriding occurs when a class
redefines a method inherited from its
superclass

static, private, and final methods cannot be
overridden

From a subclass, you can explicitly invoke an
overridden method of the superclass with the
super keyword.

27

Summary

Data and methods may be hidden or
encapsulated within a class by specifying the
private or protected visibility modifiers.

An abstract method has no method body. An
abstract class contains abstract methods.

An interfaceis a collection of abstract methods
and constants. A class implements an interface
by declaring it in its /mplements clause, and
providing a method body for each abstract
method.

28

