
1

Introduction to Software
Engineering

Rajkumar Buyya
Grid Computing and Distributed Systems Lab

Dept. of Computer Science and Software Engineering
University of Melbourne, Australia

http:/ /www.buyya.com

2

Software Engineering - Introduction

� Software Engineering is an engineering
discipline which is concerned with all
aspects of software production from the
early stages of system requirements
through to maintaining the system after
is has gone into use.

3

Software Engineering/Computer Science

� Computer Science is concerned with the
theories and methods which underlie
computers and software systems.

� Software Engineering is concerned with
the practical problem of producing
software.

4

Notes

� “Engineering discipline” – Engineers make things work.
They apply theories, methods and tools that are
appropriate but use them selectively and always try to
discover solutions to problems even when there are not
applicable theories and methods to support them.
Engineers have to work to organizational and financial
constraints.

� “All aspects of” - Software engineering is not just
concerned with the technical process of software
development but also with activities such as software
project management and the development of tools,
methods and theories to support software production.

5

Software Crisis

� Have you ever received a bill for $0.00 ?
� Did you respond by sending a cheque for $0
� Have you any idea what this cheque did for our

computer system ?
� Whether we dealing with billing software or

word processing, software is being delivered:
� Over Time
� Over Budget
� Low Quality
� Full of bugs/residual faults

� Software engineering is an attempt to solve
these problems.

6

Aspects of Software Engineering

� Historical Aspects
� Economical Aspects
� Maintenance Aspect
� Team Programming Aspects
� Design and Programming Aspects

7

Historical Aspects

� I t is a fact that electric generators fail, but far
less frequently than payroll products.

� I t is true that bridges/cars/aero-planes
sometimes collapse, but considerably less often
than operating systems (e.g. MS Windows) do.

� In the belief that software could be engineered
on the same footing as traditional engineering
disciplines, a NATO study group coined the
term “Software Engineering” in 1967.

� This was endorsed by the NATO Software
Engineering Conference in 1968.

8

Scope of Software Engineering

� Why cannot other engineering techniques
be used to build operating systems?

� Attitude to collapse
� Imperfect engineering
� Complexity
� Maintenance

9

Examples of Attitudes on Software

� People have the attitude that software collapse is not
considered and unusual occurrence and therefore don’t
pay as much attention to design.
� How many you rebooted your Microsoft Windows OS?

� Most of the time software engineers do not pay due
attention to error scenarios, boundary conditions etc.
� Divide by Zero conditions.

� Complexity of software is growing faster than the rate
we can master it.
� How many versions/bug fixes MS released within few years ?

� As a part of regular maintenance software engineers
are expected to do major changes to software which is
not the case in other fields of engineering.
� Actually this has become survival strategy for companies like

MS. Releasing new version every few months. 10

Economic Aspects

� Techniques should be economically viable
� A new coding method (CM_new) is 10%

faster than the currently used method
(CM_old). Should it be used?
� Common sense answer

� Of course
� Software Engineering answer

� What is the cost?

11

Maintenance Aspects

� Life Cycle – The series of steps software
undergoes:
� Requirements- Understand what the client wants
� Specification – Understand what the product is supposed to

do
� Design – Identify the modules and the design
� Implementation – Write code and unit test
� Integration – Combine modules and test
� Maintenance – Fixing problems and enhancements
� Retirement – Product is no longer in use

12

Relative Cost/Effort

Maintenance
67%

I ntegration
8%

Testing
7%

I mplementation
5%

Design
6%

Requirements
7%

13

Cost to Detect and Fix Faults

�

	
�

�
�

�
�

�

� ���

� 	��

� ���

� ���

�
��

	
���

���
� ����� � ���

�����
�

R
el

at
iv

e
C

os
t

to
 d

et
ec

t
an

d
co

rr
ec

t
fa

ul
t

Projects between 1974 - 1980

14

Team Programming Aspect

� Large software products are developed
by large software teams.

� Members have different responsibilities
� e.g. – requirements, design, implementation,

integration testing.
� Activities between teams have to be well

organized for efficiency.
� e.g. – meetings, interfaces

15

Software Design/Programming
Aspects

Design Principles

16

Overview

� Introduce two commonly used design
paradigms.
� Structured Design paradigm
� Object Oriented Design paradigm

� Understand general design principles.

17

Software Design - History

� Before 1975 most organizations did not
use specific design techniques.

� 1975 – 1985 Structured Paradigm was
introduced.

� Structured paradigm had certain short
comings especially for large programs.

� Object Oriented paradigm was introduced
and has become popular today.

18

Structured Paradigm

� Structured Designs are
� Action (Function) Oriented

OR
� Data Oriented

� But not both

19

Object Oriented Paradigm

� Both data and actions are of equal
importance.

� Systems is a collection of interacting
Objects.

� Object
� Software component that incorporates DATA

and the ACTIONS that are performed on the
data.

20

Structured vs OO Example

Account
balance

Withdraw
Deposit

Determine
balance

(a) Structured Paradigm

Deposit

Withdraw

Determine Balance

Account
balance

(b) Object Oriented
Paradigm

message

message

message

21

Summary

 Software Engineering is an important discipline
due to increased dependence of most of our
modern life (e.g., banking, entertainment) on
its products!

 By proper software engineering practices
software can be built with:
� Quality
� Maintainability
� On Time
� On Budget

22

Reference

! Stephen Schach,
Classical and Object-
Oriented Software
Engineering with UML
and Java, Chapter 1,
McGraw-Hill, New York,
USA.
" http:/ /www.mhhe.com/en

gcs/compsci/schach5/sam
plech.mhtml

! Any other book on
software engineering is
also fine!

